

Intro	Molecular SA	Nano-to-Micro SA	Ĩ	Micro-to-Mili SA	Conclusions	
	Need for	functional	syste	ms of all sizes	6	
		1	•			
		-	10 mm	Non-equilibrium •complexity	systems	
	Technological imperatives: Electronics Processors and memory Biomedicine Bioanalysis	-	1 mm	•the cell		
Tech Elec		tives: emorv	100 µm	Microtechnology •microelectronics	S	
Bior		· -	10 µm	•emerging techno MEMS, μfluidics	οlogies: s, μTAS, μoptics	
Nati	onal security Sensors, materials	s –	1 µm	Nanoscience / Nanotechnolo •new phenomena	anotechnology I	
		-	100 nm	•new materials		
		-	10 nm	Molecular Chemi •materials •sensors	stry	
		-	1 nm	•bioanalysis		5

3

Intro	Molecular SA	Nano-to-Micro SA	Micro-to-Mili SA	Conclusions			
Minimal thermodynamic potential							
	for T, P, N = $const$, for T, V, N = $const$,						
	SA when G = H – TS = min G: Gibbs free energy		SA when F = U - F: Helmholtz free er	- TS = min hergy			
	spontaneous process: $\Delta G = \Delta H - T\Delta S < 0$		spontaneous pro $\Delta F = \Delta U - T\Delta S <$	ocess: :0			
	Static SA can be driven by:						
	 enthalpic/e entropic ef combination 	energetic effects: fects: on of both	ΔH or ΔU <0 when ΔS >0 when ΔH or	en ∆S ≈ 0 or ∆U ≈ 0			
s	oft Matter 5 (2009) 1	110		17			

Intro	Molecular SA	Nano-to-Micro SA	Micro-to-Mili SA	Conclusions			
	Interactions for molecular self-assembly weak (~0.5-20 kJ/mol); comparable to thermal energies (~2.5 kJ/mol) unlike kinetically-stable covalent bonds (~80-1000 kJ/mol)						
Interac	tion	Range	Scaling relations				
Screen	ed Ionic (attractive/repulsive)) l nm–1µm	$U \propto \pm e^{cr}/r$ where $\kappa^{-1} = ($ the screening length (<i>k</i> energy; $\varepsilon_0 \varepsilon$, dielectric p solvent; <i>e</i> , fundamenta concentration)	$2e^2c_s/k_BT\epsilon_0\varepsilon)^{-1/2}$ is c_BT , thermal permittivity of al charge; c_s , salt			
van de	er Waals (attractive) ^a	1 nm-10 nm	$U \propto -1/r^6$ (London disp The strength is ≈ 10 k alkane molecules (e.g., C(H ₂) in water	ersion energy). J mol ⁻¹ for two , CH4, C6H6 or			
Dipole	e dipole (attractive/repulsive)	0.1 nm-1 nm	$U \propto -1/r^3$ (fixed) and U Keesom energy). The s mol ⁻¹ for two dipoles separated by 0.2 nm	$\propto -1/t^{\circ}$ (rotating, trength is $\approx 10 \text{ kJ}$ of strength 1D			
Hydro	gen-bond (attractive)	0.1 nm–1 nm	$U \propto -1/r^2$ (roughly). The hydrogen-bonds is between mol ⁻¹	e strength of most ween 10 and 40 kJ			
Aroma	atic $(\pi - \pi)$ (attractive)	0.1 nm–1 nm	Arise from overlapping of conjugated systems. M with the number of π-	of p-orbitals in π - lagnitude scales electrons			
Soft M Scienc	atter 5 (2009) 1110 :e 254 (1991) 1312		Typically the length sc is ≈ 3.4 Å	ale of interaction 18			

Intro	Molecular SA	Nano-to-Micro SA	Micro-to-Mili SA	Conclusions				
Rational drug design based on polyvalency								
Μ	ultivalent adhesion in patl virus-cell associat toxins (anthrax, ric bacteria inflammation metastasis	hogenesis: tion cin, cholera)	$ \begin{array}{c} \mathbf{R} \\ \mathbf{L} \end{array} \qquad $	R3 L3				
	$K_3 = 4 \times 10^{-17} \text{ M}$ Science 280 (1998) 708							
	Ge	eneral case						
	$\Delta \mathbf{G}_{n} = \Delta \mathbf{H}_{n} - \mathbf{T} \Delta \mathbf{S}_{n}$	1) $\Delta H_n ≈ n^* \Delta H_1$	↑ or ↓ (depending on strain	ו)				
	R _n	2) ∆S = rotationa	l + translational + confor	mational + water				
L		* if $\Delta S_{conf} = 0$ (no loss of degrees of freedom) entropic enhancement: $ \Delta S_{rot, transl. n} \sim \Delta S_{rot, transl. 1} < n * \Delta S_{rot, transl. 1} $						
	•	* if ΔS _{conf} ≠ 0 neutral, enhancement ↑, or interference						
Ang	gew. Chem. 37 (1998) 2754	3) steric shielding	g of R (adhesion inhibitio	on)	25			

Intro	Molecular SA	Nano-to-Micro	SA	Micro-	to-Mili SA	Conclusions		
	SUMMARY Functional systems by molecular self-assembly							
	Biggest si	uccess:		Орро	rtunities:			
1. N	1. Materials for Biomedicine/biomaterials IT/photonics			Targets that require synthesis Crystal engineering Rational drug design Understanding the biophysics of water				
2. F	atterned surfa Tools for biolo Tools for nand	oces ogy ofab	Prot "Thi <i>(hydi</i> wide Intel	ein foldin ngs that (rophobic i ly used H- ligent ma	ng can't be do interactions bonding in d achines	ne" in water vs. organic solvents)	
	Issues:							
1. L 2. N	imited functio lo flexibility in	nality the design of	compo	onents			57	

Intro	Molecular SA	Nano-to-Micro SA	Micro-to-Mili SA	Conclusions			
	Possible and optimal design: 2D vs. 3D						
		N. C.					
	~	40 M Transistors	10 ⁵ M nerve cells				
	Density	n ² components	n ³ components				
	Speed	long interconnects	shorter interconnects	;			
	Architecture	weakly connected networks	strongly connected networks				
		??	?				
	Fabrication						
		Cooli	ng				
				67			

		labilouti		
Techniques	Resolution	Process	Limitation	
Immersion	Approx 30 nm	Parallel	High cost, Precision	
Extreme-UV	10 -14 nm	Parallel	interlayer interference, resist issues	Ę
X-ray interference (XIL)	<10 nm	Parallel	Synchrotron, complexity	wop-d
Scanning Beam Lithography	10 nm	Serial	Slow rate, precision	- p
NIL	10 nm	Parallel	Template patterning/wear	
BCP Self-Assembly	5 nm	Parallel	Long range order	dn-u
Soft Lithography	2 nm	Parallel	Distortion	Botton
Scanning Probe	1 nm	Serial	Slow rate	

Intro	Molecular SA	Nano-to-Micro SA	Micro-to-Mili SA	Conclusions			
What can self-assembly offer to microfabrication:							
1.	Organization and 3D s Compatible w Electric/electr Can eliminate	of small and numero tructures in a paralle vith variety of materia ronic and optical fun e process incompatil	bus components into or of process als, flat and curved sur ctionality pilities (e.g., CMOS & I	rdered 2D faces II IV tech.)			
2.	 Parallel, fast process Current best <i>pick-and-place</i>: ~26,000 pph, 300 μm Alien Technologies: 2,000,000 pph, 10-100 μm cut the price of RFID tags form 0.5 \$ to 0.2 \$ 						
3.	 High accuracy of registration MEMS micro-mirrors, 150-400 μm: ±0.2 μm, 0.3° out-of-plane rotation: ≤0.1° 						
4.	Low defect ra Correction ma	ites and high yields echanisms: asse misa	mble only working dev ligned components are	ices e unstable			
MRS Bu	II. 30 (2005) 736	multi	ple assembly steps	88			

Intro	Molecular SA	Nano-to-Micro SA	Micro-to-Mili SA	Conclusions				
	SUMMARY							
Fund	Functional systems by non-molecular (µm to mm) self-assembly							
Opportunities:								
	1. F	Plausible engineering s	strategy					
		Microfabrication						
		Micro- and macro- ele	ectronics					
	2.	A new route to functior	nal 3D structures					
		Templating						
		Molecule-mimetic and	biomimetic strategies	6				
	3. \	/ersatile and simple m	odels					
		Issues: operational,	not intrinsic					
	1. F	abrication of 3D and fu	unctional components					
	Design of patterns for recognition and binding							
				89				

Intro	Molecular SA	Nano-to-Micro SA	Micro-to-Mili SA	Conclusions				
Main problems (cont'd)								
	Tradeoffs between size, complexity, and functionality of components							
	Topology/topography of "recognition" in self-assembly							
	Generation of a	asymmetry: "proteins"	rather than "crystals"					
	Theoretical basis: Molecular self-assembly: solvent, entropy Analogue of thermodynamics/statistical mechanics for nano / micro Range of structures that can be formed Perfection of the structures, nature of defects Prediction of yield by shape, size of components, and conditions of assembly Dynamic self-assembly							
	Design fail-saf	e or adaptive (redund:	ant): flow of materials	or information				
PNA	S 99 (2002) 4769		, ion of matorialo		91			

Intro Molecular SA	Nano-to-Mi	cro SA M	licro-to-Mili SA	Conclusions
	Self-asse	embly: oppor	tunities	
New tools	New scie New mat New tech	ence terials hnology	Ner	w devices
1 nm	100	nm	1 μm	100 μm
Mesoscale structure •magnetic assemblic •structured colloids •catalysts Composites •high- and low-k die •mechanical reinford •new electronic prop Photonics •sub-λ optics •fluidic optics •PBG materials	ed materials es electrics cement perties	Electronics •3D vs. 2D •biomimetics •molecular electro •flexible electron •macroelectron The fa •Nanc •Bio/f •Quar •Mect •Synt • ??	Dynam •compl •the ce tronics nics ics ar future o-IC T interface ntum computat nanical genomi hetic complexit	ic self-assembly exity II tion c surgery ty 92

