

Nanobiosensors based on optical platforms

Dr. Borja Sepulveda

borja.sepulveda@cin2.es

Institut Català de Nanociencia i Nanotecnologia (ICN2)

Campus UAB, Barcelona www.icn.cat

nanob2a.cin2.es

Outline

- ❑ What is a biosensor? Different types of biosensors
- **Optical biosensors** vs Nano-optical biosensors -> Nanoplasmonic biosensors
- Introduction to nanoplasmonics (refractive index and near field effects)
- Main steps to develop a nanoplasmonic biosensor
 - Nanofabrication of plasmonic nanostructures
 - Biofunctionalization
 - Microfluidic integration
 - Detection system
- □ Examples of nanoplasmonic biosensing applications
 - ✤ Aggregation colorimetric assays
 - ✤ Refractometric sensing
- New and additional functionalities of plasmonic nanostructures
- Conclusions

What is a biosensor?

Institut Català de Nanociència i Nanotecnologia

Applications ←→ Specific Receptor Molecular and cell biology Biomolecular interactions and their affinity (DNA, RNA, proteins, lipids...,) Biomedicine Diagnostics Detection of biomarkers, pathogens Treatment Discovery and validation of drugs Environmental control, food industry...

Elimination of sample pretreatments Direct detection in serum, urine, saliva

Types of transducers Electrochemical, mechanical, photonic...

Electrochemical

Amperometric Potentiometric Impedance Field effect transistors

Transducers

Glucose sensor

Silicon nanowires (FET)

Carbon Nanotubes and Graphene

Nanomechanical

Magnetic, calorimetric...

Cantilevers with embedded microfluidics

Optical Biosensors

Detection principles

- **Refractive index changes** (real part) $Re[n_{analyte}] \neq Re[n_{liquid}]$
- Absorption changes (imaginary part) Im[$n_{analyte}$] ≠ 0

• Fluorescence

Analyte absorbs λ_1 and emits λ_2 Labels -> microarrays

o Raman scattering

Inelastic scattering from molecular mechanical vibrations -> analyte fingerprint Very low Raman cross-section

Advantages of optical sensing

- ✓ Immunity to electromagnetic interferences
- ✓ High bandwidth
- Miniaturization
- ✓ Capacity of integration in lab-on-a-chip
- ✓ Multiplexing -> Imaging

Optical transducing

Fluorescence labeling -> Microarrays (DNA, proteins) -> High-throughput Plate readers

Drawbacks

- Photo-bleaching
- Quenching
- Indirect, end point assay -> No access to interaction kinetics
- Difficult quantification (false positives)

Label-free sensors

- ✓ Real-time
- ✓ Direct assay -> Access to interaction kinetics
- ✓ Minimum sample pre-treatments
- Accurate quantification

Examples: Integrated optical sensors, Plasmonic sensors...

Integrated optical sensors

Integrated optical waveguides -> Dielectric waveguides

Silicon Nanowires

Ring resonators

Photonic crystals

More than 20 companies worldwide: **Biacore**, Horiba, Biosensing Instruments, Sensia, Analytical systems, Reichert, Moritex...

Going nano, why?

- □ To improve sensitivity
- Miniaturization
 - Multiplexing
 - Minimize reactant consumption
 - Improve time response
- New functionalities
 - Electromagnetic field enhancement
 - SERS -> Molecular fingerprint
 - Surface enhanced fluorescence
 - Photo-thermal effects
 - Opto-fluidic systems

Going nano -> Nanoplasmonic structures

Introduction to nanoplasmonics

Near-field electromagnetic effects Refractive index dependence

Opportunities for sensing

Nanoplasmonics

Interaction of metal nanostructures with light

Institut Català de Nanociència i Nanotecnologia

Size 10-200 nm

Resonance can be tuned

- □ Localized optical resonances
- □ Surpass of diffraction limits
- □ Tunability (vis-IR)
- Amplification of electromagnetic fields
- Amplification of optical effects
 - Non-linear optics
 - \circ Raman \rightarrow SERS
 - \circ Fluorescence \rightarrow SEF
 - Infra-red Absorption \rightarrow SEIRA...

Multipolar contributions: dipole + quadrupole + ... -> Mie Theory

Metal ellipsoid

Size << Wavelength

$$\alpha_{i} = \frac{4\pi}{3} abc \frac{\varepsilon_{m} - \varepsilon_{d}}{(1 - L_{i})\varepsilon_{d} + L_{i}\varepsilon_{m}} \qquad L_{i} \text{ shape factor} \\ L_{i} = [0, 1]$$

LSPR satisfied when Re $[(1 - L_i)\varepsilon_d + L_i\varepsilon_m] = 0$

Sphere
$$\Rightarrow L_i = 1/3$$
 $\operatorname{Re}[\varepsilon_m] = -2\varepsilon_d$

Ellipsoid long axis $\Rightarrow L_i < 1/3$ Re $[\varepsilon_m] < -2\varepsilon_d$

\Rightarrow RED-SHIFTED RESONANCE

Ellipsoid short axis $\Rightarrow L_i > 1/3$ Re $[\varepsilon_m] > -2\varepsilon_d$

⇒ BLUE-SHIFTED RESONANCE

LARGE DIPOLE MOMENT IN LONG AXIS

WEAK DIPOLE MOMENT IN THE SHORT AXIS

High amplification of the scattering and absorption cross sections at the LSPR wavelength

-> easy optical detection of the LSPR via absorbance or scattering measurments

The dipoles cooperate

Near-field interaction

$$E_{1y} = E_y^{inc} + A_{yy} \cdot \alpha \cdot E_{2y}$$
$$E_{2y} = E_y^{inc} + A_{yy} \cdot \alpha \cdot E_{1y}$$
$$A_{yy} = \frac{2e^{iky}(-1 + iky)}{y^3}$$

→ RESONANCE RED-SHIFTS

$$E_{1x} = E_x^{inc} + A_{xx} \cdot \alpha \cdot E_{2x}$$
$$E_{2x} = E_x^{inc} + A_{xx} \cdot \alpha \cdot E_{1x}$$
$$A_{xx} = \frac{e^{iky}(-1 + iky + k^2y^2)}{3}$$

 v^{3}

The dipoles counteract

→ RESONANCE BLUE-SHIFTS

Institut Català de Nanociència i Nanotecnologia

✓ Amplification of fluorescence (SEF)

Biosensing application Near Field interaction

Colorimetric aggregation assays

External refractive index dependence

High sensitivity to refractive index (dielectric constant) changes

Refractometric nanoplasmonic sensors -> Detection region ≈ 30 – 50 nm

Other plasmonic nanostructures

Nanoholes in thick metal films (t > 100 nm): extraordinary transmission

Combination of diffraction and surface plasmon excitation, plus electromagnetic tunnelling through the nanoholes

Nanoholes in thin metal films (t < 40 nm):

Resonances are also highly dependent on the external refractive index

Nature **391**, 667-669 (1997)

Nature Physics **3**, 884 - 889 (2007)

Optics Express 17(3): 2015-2023 (2009)

Propagating vs LSPR Refractometric Biosensing

- Simple
- Reliable
- Well-known immobilization techniques based on thiols
- Coupler required ($\lambda_{spp} < \lambda_0$)
- Bulky
- Minimum size of sensing area restricted by SP propagation (100x100µm)
- Penetration depth 200-500 nm
- Limited sensitivity

not enough for direct detection of low molecular weight molecules

- Fabricated in self assembled processes in large scale
- Do NOT require coupler
- Penetration depth 30-50 nm
- Minimum sensing area given by particle size (50-100 nm)
- Huge multiplexing capabilities
- Sensitivity is in the same order of magnitude

Basic steps to fabricate and use a nanoplasmonic sensor

Institut Català de Nanociència i Nanotecnologia

- **What is a biosensor? Different types of biosensors**
- **Optical biosensors** vs Nano-optical biosensors -> Nanoplasmonic biosensors
- Introduction to nanoplasmonics (refractive index and near field effects)
- Main steps to develop a plasmonic biosensor
 - Nanofabrication of plasmonic nanostructures
 - Biofunctionalization
 - Microfluidic integration
 - Detection system
- Examples of nanoplasmonic biosensing applications
 - Aggregation colorimetric assays
 - Refractometric sensing
- New and additional functionalities of plasmonic nanostructures
- Conclusions

Nanoplasmonic material

Selection of the plasmonic material for biosensing

- ✓ Real part of the dielectric constant is negative
- ✓ Small imaginary part of the dielectric constant -> Low absorption
- $\checkmark\,$ Chemical stability in liquid, especially in water
- ✓ Easy to functionalize

Silver: very low optical absorption, very good plasmonic properties, poor stability

Gold: low optical absorption, high chemical stability, functionalization via thiols

Copper, Aluminum: poor chemical stability

Bottom-Up: Chemical synthesis

Simplest method, not necessary expensive equipment

Reduction of chloroauric acid (H[AuCl₄]) solution (via p.e. sodium citrate)

Au³⁺ -> Au -> precipitation into nanoparticles

Stabilization of nanoparticles by repulsive surface charges or by stabilizing agents (surfactants)

Colloidal structures for colorimetric aggregation assays, labels...

Attachment (chemical, electrostatic) to a surface for refractometric sensing, SERS...

M.C Daniel and D. Astruc, Chem. Rev. 104, 293 (2004) M.R Jones et al., Chem. Rev. 111, 3736 (2009)

Top-down

Plasmonic nanostructures 50-250 nm range -> Not accessible with Photolithography

Electron beam lithography

Focused ion beam

✓ Very precise

Very expensive Slow Limited to small areas Low throughput

Not useful for biosensing

Drawback: a expensive nanopatterning tool is still needed for the hard mask

Top-down Colloidal lithography

Top-down Colloidal lithography

O2 RIE shrinking Metal evaporation

Melting and metal evaporation at an angle

Top-down Hole-mask colloidal lithography

Institut Català de Nanociència i Nanotecnologia

Biofunctionalization

General properties

Institut Català de Nanociència i Nanotecnologia

Direct Detection

Most common bioreceptors

DNA (single strand, aptamers)

□ Proteins (antibodies, enzymes...)

Main Goals

High Sensitivity

Oriented receptor immobilization

Stability

Minimization of receptor modification

Reproducibility

Efficient biosurface regeneration

Selectivity

Reduction of non-specific binding

Biofunctionalization

DNA immobilization

DNA receptors -> Detection of DNA and RNA strands

-> Detection of proteins or other molecules via aptamers

Receptor: single strand of nucleotides (A, C, T, G) complementary to the target DNA or RNA **Detection**: hybridization (double-helix) (A/T, C/G)

Synthetic DNA with functional groups for attachment to the surface

Gold -> thiolated (-SH) single-stranded DNA (high affinity Au <-> SH)

Importance of the DNA coverage on the surface

LOW COVERAGE

OPTIMUM COVERAGE

Steric hindrance

Au

Non-specific adsorption

Au

Lateral and vertical spacers to improve access of the analyte and prevent non specific adsorption

Biofunctionalization

Institut Català de Nanociència i Nanotecnologia

Proteins (antibodies) immobilization

Proteins (chains of amino acids) cannot be chemically synthesized -> chemical modification of the protein / use their chemical groups

- 1) Alkanethiol SAM (SH-CH₂...-COOH)
- 2) Activation with EDC/NHS
- 3) Antibody covalent binding via $\rm NH_2$ groups
- 1) Alkanethiol SAM (SH-ROH:SH-RCO₂H)
- 2) Protein G covalent binding
- 3) Antibody (Fc region) affinity capture
- 4) Crosslinking ProteinG-mAb (BS³)

Prolinker[™]
 Antibody affinity capture
 BSA blocking

	Covalent	Protein G	Prolinker
Controlled Antibody Orientation	Low	High	High
Antibody Modification	High	Medium	Low
Efficiency on Biosurface Regeneration	High	High	Very High

Biosensing Applications

- **What is a biosensor? Different types of biosensors**
- **Optical biosensors** vs Nano-optical biosensors -> Nanoplasmonic biosensors
- □ Introduction to nanoplasmonics (refractive index and near field effects)
- Main steps to develop a plasmonic biosensor
 - Nanofabrication of plasmonic nanostructures
 - Biofunctionalization
 - Microfluidic integration
 - Detection system
- **C** Examples of nanoplasmonic biosensing applications
 - ✤ Aggregation colorimetric assays
 - Refractometric sensing
- ❑ New and additional functionalities of plasmonic nanostructures
- Conclusions

Colorimetric aggregation assays

Biosensing Examples

Colorimetric aggregation assays

Detection of DNA targets

Institut Català de Nanociència i Nanotecnologia

DNA functionalized nanoparticles are very stable due to the high negative charge of DNA

Colorimetric aggregation assays

Protein detection

Functionalization of colloidal particles with proteins (e.g. antibodies) is much more complex (proteins have different isoelectric point and differen hidrophilicity)

There is not universal strategy -> every protein is a different world

Detection of Concanavalin A and glucose

Detection of thrombin

K. Aslan et al., Anal. Biochem., 330, 145 (2004)

Colloidal Nanoparticles as labels

	Fluorescence molecules / Qdots	Au nanoarticle
Chemical Stability	X Photobleaching	~
Photonic stability	🗶 Blinking	~
Absorption cross section		Higher
Background Signal	 ✓ 	🗡 High

Anti-EGFR functionalized AuNPs -> diagnosis of oral epithelial cancer cells

HSC cancerous cells

AuNPs bind 600% stronger to oral malignant cells HOC 313 clone 8 and HSC 3

Colloidal Nanoparticles as labels

Pregnancy test

Refractometric sensing

Sensitivity considerations Biosensing examples

Important features to improve sensitivity

Importance of the resonance wavelength (size and shape of the nanoparticles)

M .A. Otte, ACS Nano 4, 349 (2010)

Important features to improve sensitivity

Nanostructures attached to a solid substrate

Colloidal nanoparticles – chemical bonding (thiols or EDC/NHS chemistries)

Nanolithography – Adhesion layers (Cr, Ti)

One order of magnitude decrease of the signal-to-noise ratio !!!

M .A. Otte, et al J Phys Chem C 13, 5344 (2011)

Important features to improve sensitivity – Substrate effect

Improving the access of analytes to the hot-spots

36 ICN29

Institut Catal

de Nanociència i Nanotecnologia

M .A. Otte, et al J Phys Chem C 13, 5344 (2011)

Example detection of protein conformational changes

Institut Català de Nanociència i Nanotecnologia

Protein Calmodulin suffers conformational change in the presence of Ca²⁺

W. Page Hall, Nano Lett. 11, 1098 (2011)

Example detection of protein conformational changes

Institut Català de Nanoclència i Nanotecnologia

Protein Calmodulin suffers conformational change in the presence of Ca²⁺

Immobilization of Calmodulin via linker protein cutinase

With out Ca²⁺ **folded state** With Ca²⁺ **elongated state**

W. Page Hall, Nano Lett. 11, 1098 (2011)

L. Feuz et al., Nano Lett. 12, 873 (2012)

Metamaterials Flow-through sensors

Au nanopillars -> electrolytic deposition on porous alumina substrates

A.V. Kabashin et al, Nat. Mater. 8, 867 (2009)

Metamaterials (Far field interaction)

Random 2D array

Maxwell Garnett effective medium with shape anisotropy

 $N_{eff} = n_{eff} + i k_{eff}$

Metamaterials (Far field interaction)

Detection of monoclonal antibodies of carbaryl pestizide

One order of magnitude signal-to-noise ratio enhancement

M.A. Otte, ACS Nano, 91 79 (2011)

Flow-through sensors nanohole arrays **Bringing the analyte to the hot-spot**

Institut Català de Nanociència i Nanotecnologia

Electrophoretic concentrator

Nano Letters 12, 1592 (2012)

Surface enhanced effects

Fluorescence Raman Scattering Heating

Small 6, 201-204 (2010)

Surface enhanced effects

Surface enhanced Raman scattering (SERS)

🐌 |CN29 Institut Català de Nanociència i Nanotecnologia

Nature 464, 392 (2010)

Nat. Photon. 5, 682 (2011)

Cognet L et al. PNAS100, 11350 (2003)

Gold Colloidal particles in solution Colorimetric aggregation assays -> near field intraction

- ✓ Very sensitive -> femto-molar range
- Inexpensive chemical synthesis
- ✗ Low stability -> small nanoparticles 2-30 nm
- ✔ No surface negative effects
- **X** Complex biofunctionalization
- X Challenging in complex buffers (serum)
- X No regeneration
- ✗ Difficult lab-on-chip integration
- ✓ Large multiplexing capabilities

Gold Nanostructures in a surface Refractometric assays

- Lower sensitivity-> pico/nano-molar range
- ✓ Inexpensive lithographic fabrication
- ✔ High stability
- **X** Surface negative effects
- ✔ Easy biofunctionalization
- X Complex buffers are possible (difficult)
- ✔ Regenerable
- ✔ Easy lab-on-chip integration
- ✓ Large multiplexing capabilities

Thanks for your attention

More info: <u>borja.sepulveda@cin2.es</u> nanob2a.cin2.es

B. Sepulveda et al., Nano Today 4, 244 (2009) Nanoplasmonic Sensors, Springer ISBN 978-1-4614-3933-2 (2012)