



## Helium Ion Imaging and Patterning

### Gregor Hlawacek<sup>1</sup>

<sup>1</sup>Helmholtz-Zentrum Dresden-Rossendorf, Institute of ion beam physics and materials research, mailto:g.hlawacek@hzdr.de, https://www.hzdr.de/fwiz-n

June 30, 2021

## **Overview**

### 1 Introduction

- 2 Helium Ion Microscopy
- 3 Low fluence metal free materials modification and in-situ probing

🗄 filanono 🦽 Dresden 🚫 HZDR

Þ

4 Closing remarks



## Helmholtz—Zentrum Dresden-Rossendorf



#### 2/45 HIM · 2021-06-30

### HZDR

- User facility
- Proposal based
- Free of charge
- 1000 employees
- 500 scientists
- <u>IBC</u>
- ELBE
- HLD

🗄 filanona 🦽

PET Center

DRESDEN

Topflow

HZDR

## Helmholtz—Zentrum Dresden-Rossendorf



### HZDR

- User facility
- Proposal based
- Free of charge
- 1000 employees
- 500 scientists
- <u>IBC</u>
- ELBE
- HLD
- PET Center

🗄 filanono 🦽 Dresden 🔿 HZDR

Topflow



## **HZDR Facilities**







3/45 HIM · 2021-06-30



IBC.







🗄 filanana 💏 DRESDEN 🔿

HZDR

## The Ion Beam Center—a user facility



### **Standing on the shoulder of giants** Mental, physical, and financial Support



- IONS4SET H2020: 688072
  npSCOPE H2020: 720964
- FIT4NANO COST: CA19140
- STHIM FNR: C16/MS/11354626

- picoFIB: Leverhulme Trust
- BMWi: Grant 03ET7016

🕂 filanana 🥀 🖓

BMBF: Grant 03THW12F01

HZDR

## **Overview**

### **1** Introduction

### 2 Helium Ion Microscopy

3 Low fluence metal free materials modification and in-situ probing

### 4 Closing remarks

5/45 HIM · 2021-06-30







## Overview

### 2 Helium Ion Microscopy

### The source

- Ion Beam optics and resolution
- Other subsystems





## Who saw the first atoms?



- 1951, Berlin, Germany
- First visualization of atoms



🗄 filanona 💏 oresden 🔿

6/45 HIM · 2021-06-30

HZDR

## **Requirements for Ultramicroscopy**

Partial list for scanning beam techniques

- Monochrome beam (e.g. Laser)
  - minimizes chromatic aberration
- small beam divergence
  - minimizes spherical aberration
- minimal size
  - Probe size will be folded with feature size
  - should ideally be a delta function



## The source—fundamentals

Field ion microscope



HZDR

## The source

### Solution

- Tungsten trimer on apex
- Field ionization
- Helium (Neon) gas
- Single beamlet selected









## Why He (Ne)

### Gas requirements

- High ionization potential
  - self cleaning
- Not too high polarzibility
  - Sputter damage

-

- Low boiling point
  - Tip has to be cold to reduce lateral momentum
  - $\blacksquare \ \mathsf{T}_B < 80 \, \mathsf{K}$

| Gas    | lonization pot.<br>eV | $\begin{array}{c} {\rm Polarizability} \\ 10^{-24}{\rm cm}^{-3} \end{array}$ | Boiling point<br>K |
|--------|-----------------------|------------------------------------------------------------------------------|--------------------|
| Helium | 24.6                  | 0.20                                                                         | 4.22               |
| Neon   | 21.6                  | 0.29                                                                         | 27.07              |
| Argon  | 15.8                  | 1.63                                                                         | 87.3               |
|        |                       |                                                                              | ∜fitanona .        |

DRESDEN

concept

## When He is good and why Ne (or Ga) is better sometimes



HZDR

DRESDEN

🗄 filanona 🦽

## **Tip formation**

### Field evaporation

- Tip shaping
- $\blacksquare$  Fieldstrength  $> 5\,V/\text{\AA}$
- removal of W atoms from the tip apex



### Field ionization

- normal source operation
- He: 4.5 V/Å
- Ne: 3.4 V/Å-3.8 V/Å
- current controlled by gas pressure
- **p**<sub>He</sub>:  $5 \times 10^{-6}$  mbar
- **p**<sub>Ne</sub>:  $2 \times 10^{-6}$  mbar
- current: 0.1 pA-10 pA (after aperture)







## **Optimum operation conditions** Best imaging voltage (BIV)





13/45 HIM · 2021-06-30

## **Cryogenic cooling**

- Required to keep source cold
  - Better emission
  - Trimer stability
- Vibration free

### Cost efficient

nitrogen based

## Solid nitrogen cooling

## $N_2$ phase diagram Phase Diagram for Nitrogen 0.55 Upuid Solid 0.15 Bar nond O.1 K 77.4 K Temperature



## Overview

### 2 Helium Ion Microscopy

#### The source

Ion Beam optics and resolution

🗄 filanono 🦽 Dresden 🚫 HZDR

Þ

Other subsystems



## Ion optical column



### Key properties

- $\blacksquare$  Optical magnification  $\approx 1$
- 3 Cross overs points
- 14 Apertures + Big-Hole
- Upper Quadrupol
- Lower Octopol
- Two electorstatic lenses
- Acceleration voltage 3.5 keV to 40 keV
- BIV (typical): 30 keV to 35 keV
- FOV: 0.1 μm to 1000 μm



## Ion optical column





HZDR

DRESDEN Concept

🗄 fitanono 🦽

## Ion optical column



HZDR

DRESDEN Concept

🗄 fitanono 🦽

## **Resolution I**

electron beam Neon beam Gallium beam electron beam Helium beam (1 keV) [20 keV] (20 keV) (20 keV) (30 keV) 100 nm

SRIM: Ga, Ne, He; CASINO: e



## **Resolution II** Beam optics

### 0.5 pA 30 keV He

20 pA 30 keV He



## Helium Ion Microscope

### HIM

- Helium ions (charged particle optics)
- Scanning beam
- High resolution
- Charge compensation

### Benefits

- Smallest beam diameter
  - Probe size: 0.4 nm
- beam semi-angle: 0.8 mrad
- Energy spread: 1 eV
- Brightness:  $> 10^9 \,\mathrm{Acm}^{-2} \mathrm{sr}^{-1}$
- High resolution:  $\approx$ 0.35 nm (He: < 0.5 nm, Ne: 1.8 nm)

18/45 HIM · 2021-06-30



Helium Ion Microscopy, G. Hlawacek & A. Gölzhäuser, Springer 2016



## The NanoFab in Dresden

- He, Ne, 0.5 nm resolution
- 4 Kleindiek MM3A
  - electrical characterization
  - rotation axis
  - gripper
- home built heater (<770 K)</p>
- NPVE patterning software
- GIS (Omniprobe II)
  - XeF<sub>2</sub>
  - tungsten,  $SiO_x$
- TOF-BS
- TOF-SIMS



## **Overview**

### 2 Helium Ion Microscopy

- The source
- Ion Beam optics and resolution

🕂 filanona 📌 📴 Concept 🔿 HZDR

Þ

Other subsystems



## Vacuum system



• sample:  $<5 \times 10^{-7}$  mbar

- Gun turbopump
- Column IGP
- chamber turbopump
- Gun booster (turbo)
- Gun roughing (2 stage membrane)
- Chamber booster
- Chamber roughing (2 stage membrane)
- Nitrogen dewar pump (rotary vane)

DRESDEN

🗏 filanona 🦽

## **Overview**

1 Introduction

2 Helium Ion Microscopy

3 Low fluence metal free materials modification and in-situ probing

🗄 filanono 🦽 Dresden 🚫 HZDR

Þ

4 Closing remarks

20/45 HIM · 2021-06-30



## Overview

# Low fluence metal free materials modification and in-situ probing 2D Materials structuring

- Creating, shaping and modification of nano magnets
- Towards a single electron transistor
- From 2D to 1D and 0D



🕂 filanono 🦽 🕫 🌕 HZDR

## Nanoribbons in h-BN/Gr/h-BN stacks



G. Nanda, et al., Carbon (2017)



21/45 HIM · 2021-06-30

## Graphene nano ribbon conductivity



- indicates a 8 nm dead zone next to the cut
- can not be explained by the beam tails alone

DRESDEN

🗄 filanona 🦽

## Damage mechanism



🗄 filanono 🦽 Dresden 🔿 HZDR

### **Defect production** He irradiation @ MoS<sub>2</sub> on SiO<sub>2</sub>



24/45

## **Defect production**

He irradiation @  $MoS_2$  on  $SiO_2$ 



## **Defect production**

He irradiation @  $MoS_2$  on  $SiO_2$ 



24/45 HIM · 2021-06-30
He irradiation @  $MoS_2$  on  $SiO_2$ 



### Spatial distribution of defects in $MoS_2$ by He



S. Kretschmer, et al., Appl. Mater. Inter. (2018)

concep

### Spatial distribution of defects in MoS<sub>2</sub> by Ne



S. Kretschmer, et al., Appl. Mater. Inter. (2018)

DRESDEN

concept

-‼-fitanono.

▶

# **Overview**

3 Low fluence metal free materials modification and in-situ probing

- 2D Materials structuring
- Creating, shaping and modification of nano magnets
- Towards a single electron transistor
- From 2D to 1D and 0D



# **Creating nano-magnets**



#### Properties

- simple cubic paramagnetic phase (B2)
- body centered cubic <u>ferromagnetic</u> phase (A2)
- Fe-Fe n-ns: 2.67 (B2) to 4.8 (A2)
- increased number of n-ns induces magnetism

### Ion beam writing nano-magnets

#### HIM at 25 keV Ne, 2 nm spot size



27/45 HIM · 2021-06-30

HZDR

🕂 filanono 🥀 DRESDEN 🄇

### Check the results

•  $6 \times 10^{14} \text{ Ne/cm}^2 (1 \text{ pA}/(\mu \text{s px}))$  @25 keV; gap: 40 nm



### and observing it

#### TEM Holography



-∰-fitanono

der, et al. Scientific Rer

#### TEM off-axis holography

- 200 keV, 2 T saturation field
- $\phi_{mag}$  extracted by field reversal to remove  $\phi_{el}$
- $20\cos\phi_{mag}$  plotted for a 76 nm thick lamella



### and observing it

#### TEM Holography



.**∯**-fitanono.

öder, et al., Scientific Rep

#### TEM off-axis holography

- 200 keV, 2 T saturation field
- $\phi_{mag}$  extracted by field reversal to remove  $\phi_{el}$
- $20\cos\phi_{mag}$  plotted for a 76 nm thick lamella



### Arbitrary shaped nano-magnets



🗄 filanana 💏 oresden 🄇

HZDR

# In-situ Control of Anisotropy for Spin Torque Switching



■ 25 keV local He irradiation 31/45 HIM · 2021-06-30 ■ 3x[Pt/Co/Ta] SOT stack





# In-situ Control of Anisotropy for Spin Torque Switching



# **Overview**

#### 3 Low fluence metal free materials modification and in-situ probing

- 2D Materials structuring
- Creating, shaping and modification of nano magnets
- Towards a single electron transistor
- From 2D to 1D and 0D



31/45 HIM · 2021-06-30

🗄 filanono 🦽 Dresden 🚫 HZDR

#### Targeted benefits

Iow power single electron transistor

🗄 filanono 🦽 dresden 🚫 HZDR



• 🗆

#### Targeted benefits

- Iow power single electron transistor
- room temperature operation





#### Targeted benefits

Iow power single electron transistor

🕂 filanono 🦽 🖉 💭 HZDR

- room temperature operation
- CMOS compatible



#### Targeted benefits

- Iow power single electron transistor
- room temperature operation
- CMOS compatible

#### Requirements

- $\blacksquare$  nanocrystal size  $\approx 2 \dots 3 \, \mathrm{nm}$
- $\blacksquare$  separation from source and drain  $\leq 2\,{\rm nm}$
- single nanocrystal
- massively parallel site specific nanocrystal formation



#### Solution

- ion beam mixing of Si/SiO $_2$ /Si into Si/SiO $_x$ /Si
- thermally stimulated self organization (RTA)





🗄 filanona 🦽

DRESDEN concept

33/45 HIM · 2021-06-30

mZ.

#### Solution

- ion beam mixing of Si/SiO $_2$ /Si into Si/SiO $_x$ /Si
- thermally stimulated self organization (RTA)



🗄 filanona 🦽

DRESDEN

#### Solution

- ion beam mixing of  $Si/SiO_2/Si$  into  $Si/SiO_x/Si$
- thermally stimulated self organization (RTA)



mZi

DRESDEN concept

🗄 fitanono 🦽

#### Solution

- ion beam mixing of  $Si/SiO_2/Si$  into  $Si/SiO_x/Si$
- thermally stimulated self organization (RTA)



🗄 filanona 🦽

DRESDEN concept

#### Solution

- ion beam mixing of  $Si/SiO_2/Si$  into  $Si/SiO_x/Si$
- thermally stimulated self organization (RTA)



🗄 fitanono 🦽

DRESDEN concept

33/45 HIM · 2021-06-30

mZ.

### How to create a single Si nanocrystal—in reality



# **Overview**

#### 3 Low fluence metal free materials modification and in-situ probing

🗄 filanono 🦽 Dresden 🚫 HZDR

- 2D Materials structuring
- Creating, shaping and modification of nano magnets
- Towards a single electron transistor
- From 2D to 1D and 0D

# A 2D layer of nanocrystals using broad beam irradiation



- diameter: 2.3 nm±0.6 nm
- spacing  $\approx 12 \text{ nm}$
- tunneling gap: 2.1 nm

35/45 HIM · 2021-06-30

#### Parameters

- Ion fluence:  $\approx 170 \, \mathrm{Si^+/nm^2}$
- Ion energy: 50 keV
- Thermal treatment: 1323°C, 60 s



### **Rescaling of ion beam fluence**

From Broad beam to point like irradiation









### **Rescaling of ion beam fluence**

#### From Broad beam to point like irradiation 0.20 M / UM<sup>4</sup> 0.05 dM/dy / nm<sup>3</sup> 0.04 0.03 0.02 0.10 0.01 0 0.00 10 CEPHI INN 20 20 distance from beam | nm -20 -10 <sup>0</sup> 0.05 40 50 10 20 30 40 50 0 Depth / nm

DRESDEN concept HZDR

🗄 fitanona 🥂

# **1D** line irradiation

#### 3000 Ne/nm<sup>2</sup> at 25 keV into a single line



#### Increasing the fluence from 1250 Ne/nm $^2$ to 20000 Ne/nm $^2$



🕂 filanono 🥀 🛛 DRESDEN 🄇

HZDR



#### Increasing the fluence from 1250 Ne/nm<sup>2</sup> to $20000 \text{ Ne/nm}^2$



DRESDEN concept

🕆 fitanona 🦽

HZDR

#### Increasing the fluence from $1250 \text{ Ne/nm}^2$ to $20000 \text{ Ne/nm}^2$



DRESDEN concept HZDR

🗄 fitanona 🦽

#### Increasing the fluence from 1250 Ne/nm<sup>2</sup> to 20000 Ne/nm<sup>2</sup>



HZDR

DRESDEN Concept

🗄 fitanona 🦽

# Irradiating individual pillars

#### Si pillar unirradiated







• 🗆
# Irradiating individual pillars

### Si pillar $2 imes 10^{16} \, { m Me}^+/cm^2$ at RT





HZDR

# Irradiating individual pillars

### Si pillar $2 \times 10^{16} \, \mathrm{Ne^+}/cm^2$ at 400°C









# Irradiating individual pillars

### Si pillar $2\times 10^{16}\,{\rm Ne^+}/cm^2$ at 400°C



#### Direct comparision

RT 
$$(2 imes 10^{15} \, {
m cm}^{-2}) +$$
 HT  $(1.8 imes 10^{16} \, {
m cm}^{-2})$ 



## Homogeneous diameter reduction during ion irradiation

### $8\times 10^{16}~{\rm Ne^{+}}$ at 400°C into 50 nm Si pillars



🕂 filanono 🦽 📴 Concept 🔿

HZDR

# Why is this happening



- small temperature increase keeps structure crystalline
- viscous flow of amorphous Si suppressed
- shape is preserved at HT
- highly efficient forward sputtering on the side walls



🗄 filanona 🦽

DRESDEN

## Broad beam irradiation followed by pillar and cluster fabrication

#### Forming a single addressable $\approx 2 \text{ nm Si}$ cluster



Resist exposure without proximity effect



🗄 filanono 🦽 🔤 🔿

HZDR

Resist exposure without proximity effect









Resist exposure without proximity effect



HZDR

🕂 filanona , 👬 DRESDEN 🤇

Resist exposure without proximity effect





# **Overview**

1 Introduction

2 Helium Ion Microscopy

3 Low fluence metal free materials modification and in-situ probing

🗄 filanono 🦽 Dresden 🚫 HZDR

Þ

4 Closing remarks





#### Results

- HIM (FIB) is more than just TEM sample prep
- High resolution imaging
- Nanoscale ion beam analysis
- high resolution milling
- Low fluence materials modification aka. defect engineering
- Apply for beamtime





DRESDEN

🗏 fitanona 🥂



## How to get beamtime at the IBC

#### 1 Read the general information

- https://www.hzdr.de/ibc lon Beam Center
- https://www.ionbeamcenters.eu transnational access also to other centers (travel grants!)
- https://www.hzdr.de/fwiz-n information and contacts to HIM/FIB experts
- 2 Register at https://gate.hzdr.de
- **3** Use one! of the following proposal templates (IBC and RADIATE have slightly different templates)
  - https://www.ionbeamcenters.eu/radiate\_scientific\_case\_form/
  - Take the direct templates from the IBC homepage
- 4 This is the latest point to discuss your proposal with us.
- 5 I mean it. Talk to us!!
- Submit the proposal at https://gate.hzdr.de (selected either IBC or RADIATE as the infrastructure)
- **7** Wait up to 6 weeks for the proposal to be reviewed by an international panel.

8 Welcome at the IBC!

