

Microfabrication process of magnetic sensors based on magnetic tunnel junctions

E. Paz, T. Boehnert, M. Gonzalez Debs, R. Ferreira and P. Freitas

Elvira Paz Nanoelectronics Engineering / Spintronics

INL- International Iberian Nanotechnology Laboratory

Presentation

Intergovernmental Organization

Multidisciplinary:

- Chemist
- Pharmaceutic
- Biologist
- Physicist
- Electronic
- Engineers

INL- International Iberian Nanotechnology Laboratory Presentation

- A clean room environment is required in order to achieve high yield and good reproducibility of small scale devices
- Thin Film Deposition and Material Growth
- Optical and E-Beam Lithography
- Etching, Ashing, and Micromachining
- Metrology, Inspection and Wafer-Scale Device Testing
- Advanced Packaging, Annealing, and Back-End Processes

- Part I Fabrication techniques
- Part II Introduction to spintronics
- Part III MTJ stack deposition and microfabrication
- Part IV MTJ stack linearization
- Part V Noise

Part I Fabrication techniques

Thin Film Deposition and Material Growth Deposition

- DC and RF magnetron sputtering
- Plasma Enhanced Chemical Vapour Deposition (PECVD)

Сар	
Ru	7nm
Та	10nm
IrMn	5.5 nm
Ru	0.5 nm
NiFe	16 nm
Та	0.21nm
CoFeB	2.6nm
MgO	~ 1.2nm
CoFeB	2.6nm
Ru	0.85nm
CoFe	2.0nm
IrMn	20 nm
Ru	5nm
Та	5nm
Ru	15nm
Та	5nm
Ru	15nm
Та	5nm

Lithography Coating

 Yellow filters to protect the resist of white light

- Volume
- Rotation speed
- Number of rotations
- Temperature for curing

Lithography Mask Aligner

6" Mask aligner with mercury lamp

8" Mask aligner with LED lamp

- Masks fabricated in the DWL
- Minimum feature size 3 μm

- Diode laser with 405 nm
- Minimum feature size 1 μm
- Grey scale

Lithography Electron Beam

- 100 kV Electron Beam
- Minimum feature below 10 nm

- Volume
- Rotation speed
- Time
- Post exposure bake

Molds review: Journal of Nanoscience 2016 657129

Elvira Paz www.inl.int

Etching Ion beam and Reactive etching

Reactive Ion Etching:

- anisotropic etching of silicon oxide, silicon nitride, polysilicon, and other materials such as amorphous Si, using a plasma source and fluorine chemistry
- anisotropic etching of Si trenches with high aspect ratios and through wafer vias. For that, it uses a switched process by alternated cycles of SF6 plasma etching and C4F8 plasma for polymeric deposition.

Part II Introduction to spintronics

The Nobel Prize in Physics 2007

© The Nobel Foundation. Photo: U. Montan Albert Fert Prize share: 1/2

© The Nobel Foundation. Photo: U. Montan Peter Grünberg Prize share: 1/2

The Nobel Prize in Physics 2007 was awarded jointly to Albert Fert and Peter Grünberg "for the discovery of Giant Magnetoresistance."

Parallel magnetizations

Antiparallel magnetizations

Elvira Paz www.inl.int

Tunnelling Magnetoresistance Effect (TMR) Physical mechanism

Julíère Model

Tunnelling Magnetoresistance Effect (TMR) Coherent tunnelling effect

Amorphous Barrier

TMR<40%

Crystalline Barrier

TMR>200%

Yuasa et al, Fe/MgO/Fe Nature Mat. 2005 $\Delta R/R = (R_{AP}-R_P)/R_P \approx 200\%$ at RT

Spin Transfer Nano-Oscillator **Magnetic Sensors** Ru 7nm Vortex Non-volatile CuN 30nm Memory Ru 7nm Ru 7nm Ru 7nm 10nm Та Cap 10nm Ta CuN 50nm CuN 50nm Ru 7nm IrMn 6.0nm IrMn 5.5 nm 10nm Та 10nm Та 0.5 nm Ru CoFe 2.0nm CuN 150nm Ru 0.85nm NiFe 16nm NiFe NiFe 16 nm 6nm Free CoFeB 2.6nm Laver Та 10nm 0.21nm 0.21nm 0.21nm MgO ~ 0.9nm Та Та Та CoFeB CoFeB 2.6nm CoFeB 2.6nm 2.2nm CoFeB 1.5nm CoFeB 2.6nm **Tunnel Barrier** MgO MgO ~ 0.8nm MgO ~ 0.8nm ~ 1nm MgO ~ 1.2nm MgO ~ 0.8nm CoFeB 2.6nm CoFeB 2.6nm CoFeB 2.6nm CoFeB 2.6nm CoFeB 2.6nm Reference Layer 0.85nm 0.85nm 0.85nm Ru 0.85nm 0.85nm Ru Ru Ru Ru (SAF) CoFe 2.0nm CoFe 2.0nm CoFe 2.0nm CoFe CoFe 2.0nm 2.0nm IrMn 7.5nm IrMn 7.5nm IrMn 7.5nm **Pinning Layer** IrMn 20 nm IrMn 20nm 5nm Ru 5nm 5nm Ru Ru Ru 5nm Та 5nm Та 5nm Та 5nm 5nm Ru 5nm Та CuN CuN 15nm 50nm CuN 50nm Та 50nm Ru 5nm Buffer Та 5nm Та 5nm Ta 5nm CuN 50nm Та 5nm Ru 15nm CuN 50nm CuN 50nm CuN 50nm Та 5nm Та 5nm 5nm Та 5nm CuN Та 50nm Та 5nm

Та

5nm

Elvira Paz www.inl.int

Ferromagnetism Exchange interaction

Heisenberg exchange

 $J_1 > 0$ ferromagnetic

 $J_1 < 0$ antiferromagnetic

Conditions for ferromagnetism:

- Non-compensated spin moments
- Positive Exchange Interaction

26	27	28
Fe	Co	Ni
55.85	58.93	58.70

Nearly filled or nearly empty orbitals tend to have J>0

			lron (Z=26)		
	1	2	3	4 n	
	0	1 0 -1	2 1 0 -1 -2	3 2 1 0 -1 -2 -3 m	
0	1s † 🖡	2s 🚺	3s ↑↓	4s 🚺	
1		2p	3p	4p	
2			3d † ↓ † † †	4d 🗌	
3				4f	
e					

Magnetic domain growth under a magnetic field

- Retentivity A measure of the residual flux density corresponding to the saturation induction of a magnetic material.
- **Residual Magnetism** or **Residual Flux** the magnetic flux density that remains in a material when the magnetizing force is zero. Note that residual magnetism and retentivity are the same when the material has been magnetized to the saturation point. However, the level of residual magnetism may be lower than the retentivity value when the magnetizing force did not reach the saturation level.
- Coercive Force The amount of reverse magnetic field which must be applied to a magnetic material to make the magnetic flux return to zero. (The value of H at points c and f on the hysteresis curve.)

Ideal Interface

$\uparrow\uparrow\uparrow\uparrow$	<u>+ + + +</u>	<u>† † † †</u>	$\uparrow\uparrow\uparrow\uparrow$	<u>+ + + +</u>	<u>† † † †</u>
<u>+++++</u>	11111	11111	11111	11111	1111
	1111	1111	1111	1111	1111

Mauri Model

Roughness model

- Exchange anisotropy at an ideal interface. All interface spins of the antiferromagnet are uncompensated and act in the same way on the ferromagnet. Here we assume ferromagnetic coupling across the interface
- When the exchange coupling is stronger than the anisotropy, noncollinear (see angles α and β) configurations are likely. A domain wall in the antiferromagnet is formed when the ferromagnetic film is magnetized to the right. Only one spin sublattice of the antiferromagnet is shown
- At real surfaces with roughness the nearest neighbour exchange couplings cannot all be fulfilled simultaneoustly. Therefore frustration (red crosses) and domain walls (dashed line) occur and the number of uncompensated spins at the interface is reduced, here from 6 (ideal interface) to 2 (rough interface)

Exchange Coupling

Exchange Bias with an Anti-ferromagnet

Elvira Paz www.inl.int

Artificial Magnetic Materials The RKKY Interaction

Magnetic impurity in a conducting medium induces spatial fluctuations of spin polarization of s-electrons about the impurity

 the oscillatory term of wave number 2k_F falls off like r⁻³ at large distances

- the second impurity placed in the vicinity experiences interaction with the first impurity
- depending on the distance between impurities the interactions may be ferromagnetic or antiferromagnetic

The RKKY Interaction in thin film magnetic heterostructures

Ruderman-Kittel-Kasuya-Yoshida Interaction

VSM – Vibrating Sample Magnetometer

Magnetoresistive devices

Magnetic sensors

Magnetoresistive devices

Magnetic sensors

- Zeeman energy or the external field energy, is the potential energy of a magnetised body in an external magnetic field
- Magneto-crystalline anisotropy a ferromagnetic material is said to have magnetocrystalline anisotropy if it takes more energy to magnetize it in certain directions than in others
- Demagnetizing field magnetic field (H-field) generated by the magnetization in a magnet. It is also called the stray field (outside the magnet)
- **Pinned Layer Stray Field** magnetic field generated by the magnetization of the pinned layer
- Neel coupling effect of the dipolar magnetic coupling (also known as or "orange-peel" coupling)

Magneto-crystalline anisotropy

Stray and demagnitizing field

Shape anisotropy

INDUCATIONAL IBERIAN NANOTECHNOLOGY LABORATORY

Demagnetizing Field

$$H_d = -NM$$

N – Demagnetizing factor

In general N is a tensor that depends on the shape of the magnetic material

Magnetostatic energy

$$\boldsymbol{E}_{\boldsymbol{d}} = -\frac{1}{2}\mu_0 \boldsymbol{M} \cdot \boldsymbol{H}_{\boldsymbol{d}} = -\frac{1}{2}\mu_0 N M^2$$

Elvira Paz www.inl.int

- The demagnetizing field can be very difficult to calculate for arbitrarily shaped objects, even in the case of a uniform magnetizing field
- For the special case of ellipsoids, long thin rods, and flat plates, H_d is linearly related to M by a geometry-dependent matrix of the demagnetizing factors N
- It can be as important as magnetocrystalline anisotropy in driving the magnetization process under many circumstances
- Na, Nb, and Nc are the demagnetizing factors pertaining to the three principal axes, and Na + Nb + Nc = 1

$$\frac{E_M}{V} = \frac{\mu_0 M_S^2}{2} \left(N_a m_x^2 + N_b m_y^2 + N_c m_z^2 \right) \text{ Magnetostatic energy}$$

Linearization of an MJT Sensor Shape anisotropy

INTERNATIONAL IBERIAN NANOTECHNOLOGY LABORATORY

Linearization of an MTJ Sensor Shape anisotropy

Figure 4.11: Comparison of the evolution of the experimental sensor transfer curve (right) and the modeled sensor transfer curve (left).

Linearization of an MTJ Sensor

Free layer energy

 $\mathbf{H}_{\mathbf{d}}^{\mathbf{f}} = -N_{xx}M_s^f\cos\theta$

$$\frac{E_f}{V} = \mu_0 M_s^f \left[\frac{1}{2} \sin^2 \theta (H_k - N_{xx} M_s^f) + \frac{1}{2} N_{xx} M_s^f - \cos \theta (H - H_d^p + H_N) \right]$$

Elvira Paz www.inl.int
Linearization of an MTJ Sensor

Free layer energy – Finding the energy minimum

$$\frac{\partial \frac{E_f}{V}}{\partial \theta} = \mu_0 M_s^f \sin \theta \left[\cos \theta (H_k - N_{xx} M_s^f) + H - H_d^p + H_N \right]$$

$$\frac{\partial \frac{E_f}{V}}{\partial \theta} = 0 \Rightarrow \sin \theta \left[\cos \theta (H_k - N_{xx} M_s^f) + H - H_d^p + H_N \right] = 0$$

There are then three possible solutions:

• 1-
$$\sin \theta = 0 \Leftrightarrow \theta = 0$$
 or π

• 2- $H_k - N_{xx}M_s^f = 0$ and $H - H_d^p + H_N = 0$

• 3-
$$\cos\theta = \frac{H - H_d^p + H_N}{N_{xx}M_s^f - H_k}$$

Linearization of an MTJ Sensor

Free layer energy – Finding the energy minimum

Figure 4.5: Transfer curve with hysteresis.

Figure 4.6: Linear transfer curve.

Part III MTJ stack deposition and microfabrication

4 pillars of spintronics

- Memories
- Sensors
- Oscillators
- Logic

Spin Transfer Nano-Oscillator **Magnetic Sensors** Ru 7nm Vortex Non-volatile CuN 30nm Memory Ru 7nm Ru 7nm Ru 7nm 10nm Та Cap 10nm Ta CuN 50nm CuN 50nm Ru 7nm IrMn 6.0nm IrMn 5.5 nm 10nm Та 10nm Та 0.5 nm Ru CoFe 2.0nm CuN 150nm Ru 0.85nm NiFe 16nm NiFe NiFe 16 nm 6nm Free CoFeB 2.6nm Laver Та 10nm 0.21nm 0.21nm 0.21nm MgO ~ 0.9nm Та Та Та CoFeB CoFeB 2.6nm CoFeB 2.6nm 2.2nm CoFeB 1.5nm CoFeB 2.6nm **Tunnel Barrier** MgO MgO ~ 0.8nm MgO ~ 0.8nm ~ 1nm MgO ~ 1.2nm MgO ~ 0.8nm CoFeB 2.6nm CoFeB 2.6nm CoFeB 2.6nm CoFeB 2.6nm CoFeB 2.6nm Reference Layer 0.85nm 0.85nm 0.85nm Ru 0.85nm 0.85nm Ru Ru Ru Ru (SAF) CoFe 2.0nm CoFe 2.0nm CoFe 2.0nm CoFe CoFe 2.0nm 2.0nm IrMn 7.5nm IrMn 7.5nm IrMn 7.5nm **Pinning Layer** IrMn 20 nm IrMn 20nm 5nm Ru 5nm 5nm Ru Ru Ru 5nm Та 5nm Та 5nm Та 5nm 5nm Ru 5nm Та CuN CuN 15nm 50nm CuN 50nm Та 50nm Ru 5nm Buffer Та 5nm Та 5nm Ta 5nm CuN 50nm Та 5nm Ru 15nm CuN 50nm CuN 50nm CuN 50nm Та 5nm Та 5nm 5nm Та 5nm CuN Та 50nm Та 5nm

Та

5nm

Elvira Paz www.inl.int

Magnetoresistive devices Sensors

INTERNATIONAL IBERIAN NANOTECHNOLOGY LABORATORY

Magnetoresistive devices

Artificial neurons – Neuromorphic computing

Diameter (nm)

Magnetoresistive devices Device fabrication

- 5 Lithography layers
- 22 processes
- 60 steps

Runsheet necessary for:

- Smooth team work
- Control of the process

Runsheet

TMR Stack:		TJ2615 - NO ETCH / [5 Ta / 15 Ru]x3 / 10 Ta / 5 Ru / 20 IrMn / 2 CoFe ₃₀ / 0.7 Ru / 2.6 CoFe ₄₀ B ₂₀ / MgO 4x90 3kW 600sccm [1.5 kOhm um2] / 2 CoFe40B20 / 0.21 Ta / 4 NiFe / 0.2 Ru / 6 IrMn / 2 Ru / 5 Ta / 10 Ru								
No.	Layer	Process Step	Equipment	Conditions	Recipe Name	Specs for reference / Purpose / Comments	Date Completed:			
1	Wafer			CMOS Wafer			na			
2	01 - MTJ-Dep	TMR depo	мтм			Surface will end in Ru as always. Bottom contact/buffer layers will be a happy medium from previous experiences - not as thick as 6 periods (too much topography) nor 1 period (too much contact resistance). So, we will go with 3 periods (5Ta/15Ru). Purpose to have a thicker Ta in this case (10nm instead of 5nm) is to have a larger target to stop pillar etch in the Ta. We do not want to stop in the Ru because it will oxidize in atmostphere and it Ru oxide is conductive. So, during the pillar etch, we want to remove the IrMn and the 5nm Ru.	10/10/2017			
3		Anneal	MRT	330C_1T_2hr, along the notch	330C_1T_2hr with CLEANZONE ON.	The idea is to crystalize the MgO and perform the higher temperature processes before we deposit the AlSiCu top metal. It is known to cause voids and grain issues when exposed to high temperatures, so therefore we plan to perform these anneals at the beginning, prior to the fabrication process.	06/11/2017			
4		VSM	VSM		r.		na			
5		CIPT Test	CIPT			if possible	na			

6	02 - Stopper	Stop Layer	FTM	15 TiWN / 10 AISiCu / 40 TiWN w/etch		This stopping layer is meant to be 40nm in order to have enough TiWN to have at least a 5min overetch during the via opening step. Sandwich of TiWN/AISiCU/TiWN was added to this wafer to help during the via etch. No EDX will be needed since these are relatively large pillars.	07/11/2017	- Deposition
7		Vapor Prime	Baking	150C, HDMS coating, vacuum,30 minutes cycle	#4		07/11/2017	
8		MTJ photo coating	Suss Coater	Coat AZ1505 600nm	#1		07/11/2017	
9	03 - MTJ-PH	Exposure	DWL	Mask DXF: MTJonCMOS DWL Map: MTJonCMOS Exposure Job name: MTJonCMOS Design names: MTJonCMOS_L2D CD Bias: X:-600nm Y:-600nm Focus: 50 Intensity:70 X offset: -5170.7 um Y offset: -266.275um Alignment mark: L0 No of Dies:		Alignment marks L0 (Left) = $(x, y) = (5065.7, 266.275)$ L0 (Right)= $(x, y) = (5170.7, 266.275)$ L1 (Left) = $(x, y) = (5170.7, 757.0)$ L1 (Right)= $(x, y) = (5170.7, 757.0)$ L2(Left)= $(x, y) = (5055.7, 1257.0)$ L3(Left)= $(x, y) = (5055.7, 1257.0)$ L3(Right)= $(x, y) = (5055.7, 1257.0)$ L4(Left)= $(x, y) = (5055.7, 2257.0)$ L4(Right)= $(x, y) = (5170.7, 2257.0)$ L5(Left)= $(x, y) = (5065.7, 2757.0)$ L5(Right)= $(x, y) = (5170.7, 2757.0)$	12/11/2017	- Lithography
10	5	Develop	Suss Coater	MTJ 60s develop			13/11/2017	
11		CD measure	Microscope	-			13/11/2017	
12	1	Inspection	Microscope	pictures and dimension of Pillars			13/11/2017	
13	04 - MTJ-ML	MTJ milling	Nordiko 7500	Recipe: #19 MTJ HR 130deg 15s_165deg 5s Gun: 400W; +XXXmA; +350V/-3000V; 40 sccm Ar Neut: 1x [OFF] with 4sccm, 2x [0.22A, 6 sccm] Table: 30 rpm; 130 deg 15sec_165 deg 5sec pan Stop point: 1st Bottom Ta peak and Ru Total time: 3100 sec	#6	Uniformity might not be that great due to tool issues. Some parts might have ended in Ru	13/11/2017	- Etching
14		Inspection	Microscope	check for spark clusters	N/A		13/11/2017	J
				· · · · · · · · · · · · · ·				

RESEARCH

Direct Writer Laser (DWL)

INDUSTRIAL PRODUCTION

Mask Aligner

Pillar definition - Ion milling

Pillar Definition - Ion beam Etching

Bottom contact definition

Ta

Microfabrication Process of Magnetic Sensors www.inl.int

NTERNATIONAL IBERIAN NANOTECHNOLOGY ABORATORY

RESEARCH

INDUSTRIAL PRODUCTION

RF magnetron sputtering – AI_2O_3

Plasma Enhanced Chemical Vapour Deposition (PECVD) – SiO₂

RESEARCH

INDUSTRIAL PRODUCTION

Ion milling – Al_2O_3

Elvira Paz www.inl.int

Top contact definition

Thick metal sputtering

Oxide deposition

Process summary

Post-process treatment

Magnetic annealing

Required to:

- Set the correct crystalline structure CoFeB/MgO/CoFeB
- To control the exchange bias direction

Characterization

Transmision elctron microscope

Characterization

Automatic probe station

Large Series of 1102 MTJs with an area of 100x100 μ m² each.

1000 um

MTJ after process Uniformity

Elvira Paz www.inl.int

Part IV MTJ stack linearization

Magnetic sensors Applications

FLVolume

Conventional SQUID sensors

- Requires expensive cryogenic equipment
- Requires expensive shielded rooms

Why MTJ sensors?

- They work at room temperature
- No need of expensive shielded rooms
- Low power consumption
- High output power

6x4 mm² array of 1102 MTJs connected in series with an individual

area of 100x100 μ m²

Magnetic Noise ∞ -

Why MTJ sensors?

- They have a good temperature stability
- They are robust and reliable devices
- Low power consumption
- High output power

The sensing layer and the soft pinning layer thicknesses control the magnetic linear range of the sensors Changing the thicknesses we control the sensitivity

3 Anisotropies involved:

- Magnetocrystalline: Uniaxial anisotropy (SL-Hk)
- Sensing layer soft pinning field (SL-Hex)
- Reference layer strong pinning field (RL-Hex)

Magnetic characterization

Characteristic fields

Process

Stack characteristics

Ruthenium

 The spacer Ru reduces the linear range.

Iridium Manganese

5 Ta / 50 CuN / 5 Ta / 50 CuN / 5 Ta / 5 Ru / 17 PtMn / 2 CoFe $_{30}$ / 0.85 Ru / 2.6 CoFe $_{40}B_{20}$ / MgO / 3 CoFe $_{40}B_{20}$ / 0.21 Ta / 16 NiFe / t $_{IrMn}$ / 10 Ta / 30 CuN / 7 Ru

- Exchange decreases with increasing MnIr thickness.
- Thinner MnIr appears to be better textured than thicker MnIr.

Nickle Iron

5 Ta / 15 Ru / 5 Ta / 15 Ru / 5 Ta / 5 Ru / 20 PtMn / 2 CoFe₃₀ / 0.85 Ru / 2.6 CoFe₄₀B₂₀ / **MgO** / 3 CoFe₄₀B₂₀ / 0.21 Ta / t_{MFe} / 6 IrMn / 2 Ru / 5 Ta / 10 Ru

 Changing the thicknesses of NiFe and CoFe allows the sensing layer slope to be tuned over a large range.

Limitations

- With the 2 annealing process we are not taking into account the magnetocrystalline anisotropy.
- We try to linearize with a 3 annealing process to control the 3 anisotropies independently

European patent: EP15171162.9

 Successfully lineared MTJs with linear ranges > 60-100 Oe

 $\begin{array}{ll} \mbox{Most demanding} & \mbox{Hs} < 30 \mbox{ Oe} \\ \mbox{requirements} & \mbox{Hc} < 1 \mbox{ Oe} \\ \mbox{Hf} < 1 \mbox{ Oe} \end{array}$

 Usually fails to meet the most demanding requirements for sensing applications

3-step annealing process Process

 Different times, temperatures and directions can be used to control all the anisotropies of the stack

Uniaxial Anisotropy induced during deposition

3-step annealing process 1st Annealing

Applied field

RL-H_{ex}

330°C 1T 2hr

- To crystallize the CoFeB/MgO/CoFeB
- To achieve a large TMR ratio

X

3-step annealing process 1st Annealing

Elvira Paz www.inl.int

2nd Annealing

T_{BlockRL-AFM} < T < 275°C (270°C 1T 2hr)

- To rotate both AFM without rotating the SL-Hk
- Temp: Above the block temperature of the reference layer AFM
 - Below 275°C at which the magnetocrystalline anisotropy rotates

3-step annealing process

2nd Annealing

3-step annealing process

3rd Annealing

$T_{BlockSL-AFM} < T < T_{BlockRL-AFM}$ (150°C 0.02T 1hr)

- To rotate SL AFM without rotating nothing else
- Temp: Below the block temperature of the reference layer AFM
 - Above the block temperature of the sensing layer $\ensuremath{\mathsf{AFM}}$
- Field: Enough to rotate the sensing layer

3-step annealing process

3rd Annealing

T_{BlockSL-AFM} < T < T_{BlockRL-AFM} (150°C 0.02T 1hr) H_{Ex} To rotate SL AFM without rotating nothing else **SL-Hk Rot** Temp: - Below the block temperature of the reference layer AFM - Above the block temperature of the sensing layer AFM Field: Enough to rotate the sensing layer TBIOCKSLAFM TBIOCKRLAFM Temp After 3rd Annealing Normalized Magnetization [arb. units] After 3rd Annealing .0 units] - X Direction 0.1 0.8 X Direction **Y** Direction 0.8 **Y** Direction 0.6 Normalized Magnetization [arb. 0.6 Applied field 0.4 0.4 0.2 SL-H_k 0.2 0.0 0.0 SL-H_{ex} -0.2 -0.2 -0.4 -0.4 RL-H_{ex} -0.6 -0.6 -0.8 -0.8 0 -8 -2 0 2 10 -10 -6 -4 8 -200 -150 -100 -50 50 100 150 200 Applied Field [kOe] **Applied Field [Oe]**

Elvira Paz www.inl.int

2-step vs 3-step annealing process

INDUCATIONAL IBERIAN NANOTECHNOLOGY LABORATORY

Magnetic behaviour

Impossible to linearize with 2 annealings

SAME LINEAR RANGE

Better linearization with 3 than with 2 annealings (Better H_c and H_f)

2-step vs 3-step annealing process

Temperature behavior

3 Annealings 2 Annealings 4 nm 8 nm t_{NiFe} 0.2 nm 0 nm t_{Ru} 200 3 annealings 180 2 annealings 160 1st Ann 2nd Ann 3rd Ann 140 270°C 150°C 330°C Top Contact Lead 1 T 0.02 T 1 T 120 1 hr 2 hr TMR [%] 2 hr 100 -Junction Pillar 80 1st Ann 2nd Ann

Bottom Contact Lead

1.34

8.46

50 60

3 Ann 2 Ann

30 40

H [**Oe**]= 0.06

H, **[Oe]=** 6.37

20

10

0

Applied Field [Oe]

Good linear response from micron to nano devices

Journal of Applied Physics, 115, 17E501 (2014) Nanotechnology, 27, 045510 (2016)

60

40

20 -

0

330°C 270°C

2 hr 1 hr

0.02 T

-60 -50 -40 -30 -20 -10

1 T

MTJ stack

Description

MTJ after process Electrical properties

Difference between magnetic field measured by the gauss probe and by the series is of the order of 25%, due to:

- Uniformity of the field
- The positioning and area of the MTJ series is not exactly the same as that of the gauss probe

TMR = 170% $RxA \sim 30 \ k\Omega \cdot \mu m^2$

The TMR dependence with bias voltage is negligible up to $V_{bias} = 50 \text{ V} (I_{bias} = 10 \text{ mA})$

Linear response of the sensing layer with respect to the external magnetic field

- An AC magnetic field induces an AC magnetic excitation
 R_{ac}
- DC bias current (I_{bias}) through the MTJ to measure the AC V_{out}:

$$V_{out} (f, H) = R_{ac} \cdot I_{bias}$$

- Reference measurement is acquired without AC field applied
- Electrical noise from the circuit is substracted

- The Spectrum analyzer input must be protected from the large sensor V_{bias}
- AC Coupling, only AC components of the sensor output reach the spectrum analyzer
- No amplification: G = 1

- Zero static fields (H_{DC}=0)
- 0.1 mA < I_{bias} < 10 mA</p>
- AC magnetic field at a frequency of 196 Hz
- 4.1 nT < m₀H_{AC} < 1.6 μT</p>

Dependence of the minimum detectable field on I_{bias} :

- *I*_{bias}<4 mA the noise is dominated by the noise of the acquisition system
- *I*_{bias}>4 mA the noise of the system becomes dominated by the MTJ series 1/f noise

www.inl.int