FIELD EFFECT TRANSISTOR BIOSENSORS: OPTIMISATION OF THE INFLUENCE OF SIZE AND GEOMETRY AND FABRICATION METHODS.

César Pascual García

Lead Research Associate

<u>cesar.pascual@list.lu</u>

NANOLITO Summer School - June 29th 2021

THE NEW RESEARCH AND TECHNOLOGY ORGANISATION

R&D PROJECTS IN PROGRESS IN 2019

297 total of RDI projects & contracts

SCIENCE AND TRANSFER IN 2019

OUR 4 SITES

FIELDS OF ACTIVITY

Working across the entire innovation chain

- Fundamental & applied research
- Incubation & transfer of technologies
- Policy support
- Doctoral & post-doctoral training

LIST MATERIALS

Sensors & actuators

Photocatalysis & energy harvesters Fibres/matrices adhesion

Functional coatings

Smart nanocomposites

Structures & multifunctional composites

PERSONALIZED MEDICINE-CONCEPT

Improved 4 Ps:

- Prediction and Prevention of disease
- More **P**recise diagnoses
- Personalised and targeted

interventions

-A more **P**articipatory role for patients

Horizon 2020 Future emerging technologies Project: 862539 — ElectroMed

This project is funded by the European Union

CURRENT POSSIBILITIES OF PERSONALIZED MEDICINES

Similar to biontech COVID19 Vaccine

ELECTRO Med

FROM WIGNER'S CRYSTALLIZATION TO CANCER

Beginning studies of fundamental properties of semiconductors with inelastic light scattering

BEGINNINGS WITH OPTICAL SPECTROSCOPY

^bDeni

Physica E 12 (2002) 722-725

www.elsevier.com/locate/physe

Optical study of the one-dimensional electron gas in cleaved-edge-overgrown semiconductor quantum wires

J. Rub APPLIED PHYSICS LETTERS VOLUME 76, NUMBER 24 12 JUNE 2000 Carrier and light trapping in graded quantum-well laser structures

G. Aichmayr, M. D. Martín, H. van der Meulen, C. Pascual, L. Viña,^{a)} and J. M. Calleja Departmento de Física de Materiales, Universidad Autónoma, Cantoblanco, E-28049 Madrid, Spain

F. Schafer, J. P. Reithmaier, and A. Forchel Technische Physik. Universität Würzburg. Am Hubland, D-97074 Würzburg. Germany APPLIED PHYSICS LETTERS VOLUME 77. NUMBER 23

4 DECEMBER 2000

1.26 μ m intersubband transitions in In_{0.3}Ga_{0.7}As/AIAs quantum wells

César Pascual Garcia,^{a)} Andrea De Nardis, Vittorio Pellegrini,^{b)} Jean Marc Jancu, and Fabio Beltram Scuola Normale Superiore and INFM, Piazza dei Cavalieri 7, I-56126 Pisa, Italy

Bernhard H. Müeller,^{c)} Lucia Sorba,^{d)} and Alfonso Franciosi^{e)} Laboratorio Nazionale TASC-INFM, I-34012 Trieste, Italy

(Received 24 August 2000; accepted for publication 10 October 2000)

We observed room-temperature intersubband transitions at 1.26 μ m in *n*-doped type-II In_{0.3}Ga_{0.7}As/AlAs strained quantum wells. An improved tight-binding model was used to optimize the structure parameters in order to obtain the shortest wavelength intersubband transition ever achieved in a semiconductor system. The corresponding transitions occur between the first confined electronic levels of the well following mid-infrared optical pumping of electrons from the barrier X-valley into the well ground state. © 2000 American Institute of Physics. [S0003-6951(00)02950-8]

PhD. AT SCUOLA NORMALE SUPERIORE

Wigner molecule

In the localized limit (strong correlation) the excitations of electrons in a QD correspond to the roto-vibrational modes of an electron molecule.

Modulationdoped hetenostructors

QUANTUM DOT FABRICATION

FOCK-DARWIN ENERGY LEVELS IN A PLANAR QD

$\epsilon_{n,,m} = \hbar \omega_0 (2n + |m| + 1) = \hbar \omega_0 (N)$

PROBING COLLECTIVE EXCITATIONS

Inelasttic light scattering

Inelastic light scattering probes both charge and spin excitations

DICOVERING A NEW EXCITATION

Four electron quantum dot

PRL 95, 266806 (2005)

MOLECULAR WIGNER CRISTALISATION

$$\epsilon_{n,m} = \hbar \Omega_0(N) - \hbar \omega_c m/2$$

 $\Omega^2 = \omega_0 + \omega_c$

In the localized limit (strong correlation) the excitations of electrons in a QD correspond to the roto-vibrational modes of an electron molecule.

Nature physics 944, 1038 (2008) PRL 95, 266806 (2005)

TRANSIT TO BIOLOGY

From SNS to JRC

SHADOW EVAPORATION

Advantages:

- Saves lithography steps
- Possibility to deposit different materials without breaking vacuum
- Usually very good lift-off

JOINT RESEARCH CENTRE

ELECTRON MICROSCOPY

UPTAKE OF NP'S BY CELLS

Study by FIB lithography 35nm NPs

5nm NPs

Small 9, 472 (2013) SCIENTIFIC REPORTS 3, 1326 (2013)

BIOSENSORS UNEXPECTED PROBLMES...

COMING FROM WINGER CRISTALISATION

BIOSENSORS

A device which combines a biorecognition element with a transducer

- ✓ Label-free sensing
- ✓ Real time
- ✓ Selectivity
- ✓ Small size
- ✓ Multiplexing
- ✓ Reduce costs
- ✓ Material control

From MOSFET to Bio-ISFET

What is the charge distribution

So what is the real pontential

Difference dependences of the current

Oxide surface as pH sensor

Proton equilibrium

 $Q = q \left[[SiOH_2^+] [SiO^-] \right]$

$$k_b = \frac{[SiO^-][H^+]_S}{[SiOH]}$$

$$Q(pH) = qN_0 \frac{\frac{[H^+]_S}{k_a} - \frac{k_b}{[H^+]_S}}{\frac{1+k_b}{[H^+]_S} + \frac{[H^+]_S}{k_a}}$$

$$k_a = \frac{[SiOH][H^+]_S}{[SiOH_2^+]}$$

Point of zero charge
$$Q(pH) = 0$$

$$k_a k_b = \left[\left[H^+ \right]_S^2 \right] = \left[\left[H^+ \right]_B^2 \right]$$

$$pzc = \frac{pk_a + pk_b}{2} = \frac{6 + (-2)}{2} = 2$$

$$\lim_{\text{INSTITUTE OF SCIENCE}} 2$$

$$\lim_{\text{INSTITUTE OF SCIENCE}} 2$$

NERST IIMIT

pH Transfer characteristics

ION SENSITIVE FIELD EFFECT TRANSISTOR

ISFET

STATE OF THE ART IN CLINICAL ISFET TECHNOLOGY

Ion torrent technology

Amplicon Sequencing

 Sequencing of a dedicated panel of genes/hotspots

PCR Amplification

Mostly Ion Torrent technology ~15% market share

pH ISFET for NGS

Rothberg et. al. 3 4 8 | N AT U R E | V O L 4 7 5 | 2 1 J U LY 2 0 1 1 doi:10.1038/nature10242

NANO-BIOSENSORS and suddently... More problmes

BIOSENSORS

A device which combines a biorecognition

element with a transducer

Bioconjugation of targetanalyte/receptors are transduced by the capacitive effect of a dielectric/semiconductor junction in contact with the electrolyte.

- ✓ Label-free sensing
- ✓ Real time
- ✓ Selectivity
- ✓ Small size
- ✓ Multiplexing
- ✓ Reduce costs
- ✓ Material control

Biosensing

Objectives:

- Detect the presence/no presence of something
- Quantify

What:

- <u>Small molecules</u>: Oxygen, Peroxides, NO, Neurotransmisors (dopamine...)
- <u>DNA:</u>
- Proteins
- <u>Sugars</u>
- <u>Lipids</u>
- Hormones, enzyme

concentrations

 $C_9H_8O_4$ →180.157 g/mol Solubility 1mg/mL

650 mg in 6 L \rightarrow ~3 mM

 $C_{21}H_{30}O_2 \!\rightarrow\! 314.45 \text{ g/mol}$

Solubility 2.8mg/mL

130 mg in 6 L $\rightarrow~$ ~0.4 mM

ISFET TECHNOLOGIES

01 Traditional planar sensors

(a) PI laver Si-NWs AI AI (b) electrolyte 10 µm Sensing window OVds Ref. electrode 🗖 Si SiO2 BOX SiN Si Substrate D PI

Traditional FET vs nano-wires Why so sensitive?

Surface area?

FET LABEL FREE SENSING

Comparison of detection limit, Response time for different configurations of BioFETs

Sensor type		Analyte type				References
		DNA		Protein		
		Limit of Detection (M)	Response Time (s)	Limit of Detection (M)	Response Time (s)	
NW FETs	Conventional	1E-6 to 1E-15	50 to 600	1E-12	500 to 2000	9-15, 18-19
	NW arrays			1E-13 to 1E-16	50-3600	20,21
Planar FETs	Conventional	1E-4 to 1E-7	300 to 54000	1E-5 to 1E-7	300 to 1200	3-8, 16-17
	Porous sensing layer WITH HEATING	1E-15	43200			1
FinFETs						

46

Mass transport in a planar sensor

Mass transport in the case of a NW

HIGH ASPECT RATIO FIN-FET

Our proposal for FETs

HIGH ASPECT RATIO FINFET

FABRICATION

h:W ~1:4

Rollo S. et.al. (2019). Sci. Rep. 9(1).

UV LITHOGRAPHY MLA 150 HEIDELBERG INSTRUMENTS

Maskless UV Lithography :

Direct laser writing lithography system for patterning down to $1\mu m$.

MLA characteristics:

- Substrates size from 5*5mm² to 8'
- Substrates thickness from 0.1 to 6 mm
- Front side alignment (500nm accuracy)
- Back side alignment (1µm accuracy)
- Laser wavelength 375 nm (I line)
- Real time autofocus system

FLOW CHART

MASK DESIGN

DOSE CALIBRATION

index

- Substrate
- Resist (s)
- Layers
- Resolution
- Density of features
- Dose calibration every time you change resist
- Every time you change substrate refractive
 - Be aware of transparent layers
 - Every time you have a new deposition
 - UV is also sensitive to local changes of refractive index so you may need for each layer.
 - Optimise the layer with the material with ۲ highest resolution (smallest features)
 - Try to do a dose test with similar density of • features Sample loading ->

SI ANISOTROPIC ETCHING

⁵⁵ Rollo et.al. Scientific Reports volume 9, Article number: 2835 (2019)

FLOW FOR WET ETCHING

(e)

Width=5

Width=6,22µm

TRANSFER CHARACTERISTICS

OUTPUT CHARACTERISTICS

FINFET ADVANTAGES

FINFET IMPROVED SENSITIVITY

ligh aspect ratio FinFET

LUXEMBOURG Institute of science And technology	LIST 🥑
--	--------

FinEET	$D(m^2/sec)$	C (M) for 43s	Time (s) For 10 ⁻¹⁰ M	
Ductours	0.10-9			
Protons	9.10-3	4.10-10	43 S	
Hemoglobin (in water)	6.9·10 ^{-11 (4)}	5.1·10 ⁻⁸	2.25·10 ⁴	
DNA (in water)	5.3·10 ⁻¹¹⁽⁵⁾	6.6·10 ⁻⁸	2.92·10 ⁴	
ISFET	D (m ² /sec)	C (M) for 43s	Time (s) For 10 ⁻¹⁰ M	
Protons	9·10 ⁻⁹	3.74·10 ⁻⁸	2·10 ⁴	
Hemoglobin (in water)	6.9·10 ⁻¹¹	1.48·10 ⁻⁶	2.7 ·10 ⁶	
DNA (in water)	5.3·10 ⁻¹¹	1.74·10 ⁻⁶	3.4·10 ⁶	
Nanowires	D (m ² /sec)	C (M) for 43s	Time (s) For 10 ⁻¹⁰ M	
Protons	9 ⋅10 ⁻⁹	4.8·10 ⁻¹¹	21	
Hemoglobin (in water)	6.9·10 ⁻¹¹	6.36·10 ⁻⁹	2.74·10 ³	
DNA (in water)	5.3·10 ⁻¹¹	8.3·10 ⁻⁹	3.6·10³	

FET COMPARISON

FinFET sensors- wafer fabrication

Devices have been tested, they have good ohmic behavior through the wafer

- 3 epoxy layers
- 1. Passivation of nonsensing regions (30)
 - sensing regions (300 nm)
- Isolation of exposed contacts (8 μm)
- 3. Integrated microfluidic channels (100 μm)

AND THE PERSONALIZED MEDICINE?

Horizon 2020 Future emerging technologies Project: 862539 — ElectroMed

This project is funded by the Buropean Union

The Challenge of Combinatorial Chemistry

Resin

Coupling

Deprotection

Activation

Amino Acid

 H^+ H^+

A

G

LUXEMBOURG `OHNSTITUTE OF SCIENCE AND TECHNOLOGY

Peptides (23 Aminoacids) A deca-aminoacid peptide has

10²³ combinations

FFT

There is a need for programmable sensors

Our Approach : Miniaturized control of acidity

CHALLENGES

Our Approach : Miniaturized control of acidity

Voltage bias

$$pH = -\log\left[\frac{H^+}{V}\right] = -\log\left[\frac{I \cdot t}{e \cdot N_A \cdot V cell}\right] < -\log\left[\frac{S}{h}\right]$$

pH ACTUATION

Current (µA)

Balakrishnan et al. Proceedings. 2018, DOI: 10.3390/proceedings2 404070

e

SNARF fluorescence spectra

Cycle 5
pH control in Multiplex electrodes

Multiplexed Control

Balakrishnan et.al. arXiv:1908.02465 [physics.app-ph] (2019)

Stability of proton concentration= 10 min

Acidity generation in Aqueous vs Organic solvent 1.0x10

5(6)-Carboxyfluorescein 500uM in KCI 100mM

5(6)-Carboxyfluorescein 500uM in ACN Bu₄PF₆ 10mM

LUXEMBOURG INSTITUTE OF SCIENCE AND TECHNOLOGY

In situ peptide synthesis. Boc deprotection

Integration of Teflon- Electrode isolation

Acidity deprotection on the Platform

Conclusions and Perspectives

Production of acidity ~ 50 % TFA

Peptides and Nucleotides

Stability of H+ concentration

Increase the yield = Longer biopolymers

High density devices

10 μ m spots = 10⁴ devices /cm²

100 μ m spots = 10⁶ devices /cm²

Industrial PhD position in Paris – microfluidic hardware development

You don't recognize yourself in the academic world? You want to combine entrepreneurship and a PhD? You feel ready to work on an interdisciplinary research project?

IMPORTANT: You must not have spent more than 12 months in France during the past 3 years.

35-45 k€

engineering

September 2021

Acknowledgments

Neither the European Commission nor any person acting on behalf of the European Commission is responsible for the use which might be made of the following information

Janwa el Maiss Sivashankar KRISHNAMOORTHY Divya Balakrishnan Serena Rollo Dipti Rani Jean-Sebastien Thomann Aruna Singh

www.list.lu www.electromed.eu/ Twitter: @electromed7

the FNR under the Attract program, fellowship number 5718158 NANOpH.

This project is funded by the European Unior

This project received funding from the Horizon2020 program grant agreement No 862539-FET OPEN.