Nanolithography at ICMM

i). ICMM Facilities

ii). Scanning Probe Lithography: oxidation SPL

2D Materials

iii) Nanopatterning & Nanodevices

iv). Summary

icm

rednanolito

5 µm

Instituto de Ciencia Materiales de Madrid

103 staff 360 staff+pot-docs+gradduate students+technistians+administrative

Materiasl for a sustainable world Materials for health Materials for emerging technologies MATERIALS SCIENCE FACTORY FACTORÍA DE CIENCIA DE MATERIALES

Quantifiable scientific excellence in Materials Science and Nanotechnology

Clean room equipment

e-beam evaporator

Wire bonder

Nanomechanical Spectroscopy

3D AFM

Oxidation SPL

Cell nanomechanics & medicine

ForceTool

STM	dynamic AFM	high speed AFM
1990 1993	1994-1998 1993-1999 1998-200	04 2009
conta AFM	ct meniscus kinetic	CS
Si, Ta. Nb, Ti, (trans GaAs graphene dicha	ition metal alcogenides
1990-1998	2008-2011	2015-2016
1995-2005	2003-2010	2016
SAM	Protein, macromolecules patterning	Grey-scale patterning
Metal-oxide transistors	Quantum devices graph (III-V compounds) device	ene 2D TMD es devices
1995-1998	1998-2002 2008-20	013 2015-2016
1997-200	08 2002-2011	2007-2012
Single electro transitors	on Si nanowires, Complex oxides QD	optical devices

Oxidation SPL

Oxidation SPL

dielectric barriers Templates Masks local conductivity

AFM head

Inlet for H₂ O

hygrometer

sample

N₂ inlet

o-SPL:

Direct Nanppatterning a large variety of materials

graphene

A.W. Heine, R.J. Haug et al. PRL 116, 096802 (2016))

E. Coronado

Niobium

WSe₂

silicon

CAPITUL O PRIMERO

Que trata de la condición y ejercicio del Famoso yvaliente hidalgo don Quijote de la Mancha

En un lugar de la Mancha, de cuvo nombre no quiero acordarme, no ha mucho tiempo que vivía un hidalgo de los de lanza en astillero, adarga antigua, rocín slaco y galgo corredor. Una olla de algo más vaca que carnero, salpicón las más noches, duelos y quebrantos los sábados, lentejas los viernes, algún palomino de añadidura los domingos, consumían las tres partes de su hacienda.

ForceTool

1000 nm

R. Garcia

icm

SAM templates

R. Maoz, S.R.Cohen and J. Sagiv.

A. I. Dago, Y.K. Ryu, R. Garcia

Metals, semiconductors, Organosilanes, 2D materials, complex oxides ...

TIP-BASED NANOFABRICATION

Nanopatterning

Nanoelectronic devices

Molecular Architectures

Protein Patterning on SiNW

By combining nanolithography (top-down) and

Ferritin

R.V. Martinez et al., Adv. Mater. 19, 291 (2007) .

Garcia, A.W. Knoll, E. Riedo, Nature Nanotechnology 9, 577 (2014)

SiNWs for molecular recognition

SiNWs for molecular recognition

ForceTool

STEM & CHEMICAL ANALYSIS of GRAPHENE PATTERNS

Direct fabrication of 2D Transition Metal Dichalcogenides devices: WSe₂

9 nm

ForceTool

icn

 H_2O

After immersion in

Y.K. Ryu, A.I. Dago, F.M.Espinosa et al. Appl. Surf. Sci. 539, 148231(2021) A. I. Dago, Y.K. Ryu, R. Garcia APL 109, 163103 (2016)

Anisotropic o-SPL process

Y.K. Ryu, A.I. Dago, F.M.Espinosa et al. Appl. Surf. Sci. 539, 148231(2021)

Oxygen plasma produces a very thin and uniform oxide that facilitates o-SPL

MoS₂

A.I. Dago, Y.K. Ryu, R.Garcia, ACS Appl. Mat. & Interfaces 10, 40054 (2018) Y.K. Ryu, A.I. Dago, F.M.Espinosa et al. Appl. Surf. Sci. **539**, 148231(2021)

The oxides of TMD are removed by immersion in water

Pattern for a Quantum point contact on WSe2

ForceTool

icm

•Improves the electrical response of the device

• Facilitates processing

 $WSe_2 + 9H_2O + 14h^+ \rightarrow WO_3 + 2SeO_3^{2-} + 18H^+$

Nano-FETs based on single layer MoS₂

F.M. Espinosa et al. *APL* **106**, 103503 (2015)

ForceTool

icm

Acknowledgements

Thank you for your attention !

External collaborators

Andras Kis, EPFL, Switzerland Armin W. Knoll, IBM Zurich Elisa Riedo, Georgia Inst. Technol., USA José M. de Teresa, CSIC Soraya Sangiao, INA

rednanolito

ForceTool

iCN

Funded by the European Union

