

DEPARTAMENTO DE FÍSICA FUNDAMENTAL

http://nanotech.usal.es/

Grupo de Nanotecnología – Nanotech

Materiales cuánticos

Enrique Diez

Nikon Flan Fluo 10×/0.30 OFN25 DIC I 200 nm 1

Reunión de Nanolito - 13 de noviembre de 2020

Grupo de Nanotecnología

Materiales cuánticos: 2D & Aislantes topológicos Dpto. Física Fundamental Mario Amado, Jorge Quereda, Pilar García, E.D.

> Emisión y detección de Terahercios Dpto. Física Aplicada Yahya Meziani

Materiales Coloidales Dpto. Química Física Mercedes Velázquez **NanoTECH**: grupo de investigación interdepartamental tras la unión de tres grupos de investigación independientes que ya colaboraban entre sí desde 2008.

COMPOSICIÓN 2020

- 11 Profesores permanentes
 - 3 Postdoc
- 3 Estudiantes de doctorado
- 2 Técnicos

Reunión de Nanolito - 13 de noviembre de 2020

3

Grupo de Nanotecnología – Nanotech

Edificio Multiusos I+D+i

C/ Espejo, 2 – 37007 Salamanca

Edificio Trilingüe

Facultad de Ciencias Plaza de la Merced, 2 - 37008 Salamanca

Laboratorio de Bajas Temperaturas (Sin líquidos criogénicos) http://nanotech.usal.es/

Nano TECH

VNIVERSIDAD DSALAMANCA

1218 - 2018

Laboratorio de Bajas Temperaturas (Sin líquidos criogénicos)

- Rotación de la muestra
- LCC44, LC20, DIL16

VNIVERSIDAD DSALAMANCA

ROO AND

1218 - 2018

- VTI 1,5K 12 Teslas
- ³He 290 mK- 12 Teslas

Espectroscopía de Fotocorriente

Jorge Quereda

Optoelectrónica en Materiales 2D

Daniel Vaquero

Juanan Delgado-Notario

Adrián Martín

Juan Salvador

Sala Blanca de Nanotecnología

DEPARTAMENTO DE FÍSICA FUNDAMENTAL

Sala blanca de Nanotecnología

- 200 metros cuadrados repartidos entre las plantas -2 y -3 del Edificio de I+D+i
- Tres salas clasificadas: Vestidor y Evaporación (ISO 7 Clase 10.000) y Sala Litografía (ISO 6 – Clase 1.000).
- Sala Técnica (ICP y Microraman) y Sala de Gases sin clasificar.
- Sistemas de seguridad de última generación en detección, corte y absorción de gases tóxicos.
- Diseñada para trabajar con especial eficiencia en grafeno y materiales 2D.

FONDO EUROPEO DE DESARROLLO REGIONAL

UNIÓN EUROPEA 9

Reunión de Nanolito - 13 de noviembre de 2020

Tratamientos Térmicos Rápidos

RTP (AsOne 100)

- Rampas 200°C/s hasta 1500 °C
- Automático hasta 200 steps
- Obleas 4 "
- Alta vacío < 10⁻⁶ mbar
- Nitrógeno
- Helio
- Argón
- Oxígeno (RTO)

Perfilometría y Microscopía óptica

http://nanotech.usal.es/

VNIVERSIDAD DSALAMANCA CAMPUS DE PRETA INTERNACIONAL 1218 ~ 2018

DektakXT – 3D (Bruker) DM8000 – (LEICA)

Perfilómetro:

- Sub-nanométrico
- 3D
- Patrones calibrados NIST 7 nm y 1 micra.

Microscopio óptico

- 5x,10x,20x,50x y 100x
- Luz led blanca y UV
- Oblicua
- Sub-micron

EHT = 5.00 kV

WD = 7.9 mm

Signal A = InLens

Photo No. = 4659

Date :25 May 2018

Time :14:00:34

ZEISS

Principales equipamientos

http://nanotech.usal.es/

ICP/RIE Ataque por Plasma

Reunión de Nanolito - 13 de noviembre de 2020 Espectroscopía Micro-Raman (R-G -IR)

http://nanotech.usal.es/

Materiales Cuánticos:

Grafeno y aislantes topológicos

Materiales cuánticos

Baja Dimensionalidad + Fenómenos emergentes + Topología no trivial

REVIEW ARTICLES PUBLISHED ONLINE: 25 SEPTEMBER 2017 | DOI: 10.1038/NPHYS4274

Emergent functions of quantum materials

Yoshinori Tokura^{1,2*}, Masashi Kawasaki^{1,2} and Naoto Nagaosa^{1,2}

Materials can harbour quantum many-body systems, most typically in the form of strongly correlated electrons in solids, that lead to novel and remarkable functions thanks to emergence—collective behaviours that arise from strong interactions among the elements. These include the Mott transition, high-temperature superconductivity, topological superconductivity, colossal magnetoresistance, giant magnetoelectric effect, and topological insulators. These phenomena will probably be crucial for developing the next-generation quantum technologies that will meet the urgent technological demands for achieving such as photovoltaics and thermoelectrics, and secure quantum computing and communication are the three major fields of applications working towards this goal. Here, we review the basic principles and the current status of the emergent phenomena and functions in materials from the viewpoint of strong correlation and topology.

Reunión de Nanolito - 13 de noviembre de 2020

REVIEW ARTICLES PUBLISHED ONLINE: 30 OCTOBER 2017 J DOI: 10.1038/NPHY54302

The physics of quantum materials

B. Keimer^{1*} and J. E. Moore^{2,3*}

The physical description of all materials is rooted in quantum mechanics, which describes how atoms bond and electrons interact at a fundamental level. Although these quantum effects can in many cases be approximated by a classical description at the macroscopic level, in recent years there has been growing interest in material systems where quantum effects remain manifest over a wider range of energy and length scales. Such quantum materials include superconductors, graphene, topological insulators, Weyl semimetals, quantum spin liquids, and spin ices. Many of them derive their properties from reduced dimensionality, in particular from confinement of electrons to two-dimensional sheets. Moreover, they tend to be materials in which electrons cannot be considered as independent particles but interact strongly and give rise to collective excitations known as quasiparticles. In all cases, however, quantum-mechanical effects fundamentally alter properties of the material. This Review surveys the electronic properties of quantum materials through the prism of the electron wavefunction, and examines how its entanglement and topology give rise to a rich variety of quantum states and phases; these are less classically describable than conventional ordered states also driven by quantum mechanics, such as ferromagnetism.

16

Materiales Cuánticos: Materiales 2D y aislantes topológicos

- **1. GFETs para detección de Terahercios**
- **2.** Nanoconstrictiones en Grafeno y aislantes topológicos

3. Ruptura de la simetría en heteroestructuras de materiales 2D

4. Optoelectrónica en Materiales 2D con baja simetría

hBN

Graphene

Detección a 0.15 y 0.3 THz a 4 K

ADGG-GFET – Medidas de THz

Efectos de las puertas superiores e inferiores sobre la fotocorriente a 0,3 THz a bajas temperaturas (4K)

ADGG-GFET – Medidas de THz

ADGG-GFET-Monolayer, f=300GHz

Nano TECH

FET for detection of terahertz radiations

Cite as: APL Photonics **5**, 066102 (2020); https://doi.org/10.1063/5.0007249 Submitted: 10 March 2020 . Accepted: 26 May 2020 . Published Online: 09 June 2020

j J. A. Delgado-Notario 跑, V. Clericò 跑, E. Diez 跑, J. E. Velázquez-Pérez 跑, T. Taniguchi, K. Watanabe խ, T. Otsuji ២, and Y. M. Meziani 🗅

0.3 THz and visible image

Materiales Cuánticos: Materiales 2D y aislantes topológicos

1. GFETs para detección de Terahercios

2. Nanoconstrictiones en Grafeno y aislantes topológicos

hBN Graphene

3. Ruptura de la simetría en heteroestructuras de materiales 2D

4. Optoelectrónica en Materiales 2D con baja simetría

GRAPHENE NANOCONSTRICTIONS

nature physics

PUBLISHED ONLINE: 5 JUNE 2011 | DOI: 10.1038/NPHYS2009

Quantized conductance of a suspended graphene nanoconstriction

Nikolaos Tombros^{1,2}*, Alina Veligura², Juliane Junesch², Marcos H. D. Guimarães², Ivan J. Vera-Marun², Harry T. Jonkman¹ and Bart J. van Wees²

 $\mu > 500.000 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$

- Current annealing "fabrication"
- No constriction control
- No linear dependence

ana

GRAPHENE NANOCONSTRICTIONS

CRYO-ETCHING TO AVOID METAL ETCHING MASK

Unprecedent control of edge roughness

VNIVERSIDAD DSALAMANCA

PMMA mask ICP/RIE SF₆/Ar etching

T= -110 °C Ar/SF6 (10/40 sccm) P=6 mtorr

CRYO-ETCHING: Transport (1/3)

- High Mobility @ RT μ > 150.000 cm²V⁻¹s⁻¹
- Mean free path @ RT $l > 1,5 \mu m$
- Residual doping @ RT $n_0 \sim 3.3 \ 10^{10} \ cm^{-2}$

GRAPHENE NANOCONSTRICTIONS CRYO-ETCHING: Transport & Theory(2/3)

- Tight-binding Approach (1 orbital per C atom)
- Quantum Transmitting Boundary Method C. S. Lent and D. J. Kirkner, J. Appl. Phys. **67** (1990) 6353
- Edge profile obtained from AFM measurements
- Threshold value W K⁰_F due to residual doping $n_0 \sim 3.3 \ 10^{10} \text{ cm}^{-2} \rightarrow W k_F^0 = \sqrt{\pi n_0} W \sim 6.7.$
- Linear dependence of Wk_F
- Almost perfect ballistic transport \rightarrow t=0.9
- Good agreement between the experimental and simulated conductance.

Materiales Cuánticos: Materiales 2D y aislantes topológicos

- **1.** GFETs para detección de Terahercios
- 2. Nanoconstrictiones en Grafeno y aislantes topológicos

3. Ruptura de la simetría en heteroestructuras de materiales 2D

4. Optoelectrónica en Materiales 2D con baja simetría

HIBRIDACION DE ESTADOS LATERALES

RESEARCH

TOPOLOGICAL MATTER

VNIVERSIDAD D SALAMANCA

Absence of evidence for chiral Majorana modes in quantum anomalous Hall-superconductor devices

800 ANOS

1218-2018

Morteza Kayyalha¹*, Di Xiao¹*, Ruoxi Zhang¹*, Jaeho Shin¹, Jue Jiang¹, Fei Wang¹, Yi-Fan Zhao¹, Run Xiao¹, Ling Zhang¹, Kajetan M. Fijalkowski²⁻³, Pankaj Mandal²⁻³, Martin Winnerlein²⁻³, Charles Gould²⁻³, Qi Li¹, Laurens W. Molenkamp²⁻³, Moses H. W. Chan¹†, Nitin Samarth¹†, Cui-Zu Chang¹†

Reunión de Nanolito - 13 de noviembre de 2020

VALLEYTRONICS EN MATERIALES 2D

ARTICLE

Unconventional superconductivity in magic-angle graphene superlattices . Takashi Taniguchi³, Efthimios Kaxiras^{2,4} & Pablo Jarillo-Herrero

doi:10.1038/nature26160

0.1038/441567-020-01062-6

Electrically tunable correlated and topological states in twisted monolayer-bilayer graphene

Shaowen Chen^{©12,8}, Minhao He^{©1,8}, Ya-Hui Zhang⁴, Valerie Hsieh¹, Zaiyao Fei^{©3}, K. Watanabe⁹⁵, T. Taniguchi⁹⁶, David H. Cobden⁹³, Xiaodong Xu⁹¹⁷, Cory R. Dean⁹¹² and Matthew Yankowitz 317

Correlated insulating and superconducting states in twisted bilayer graphene below the magic angle

Emilio Codecido¹, Qiyue Wang², Ryan Koester¹, Shi Che¹, Haidong Tian¹, Rui Lv¹, Son Tran¹, Kenji Watanabe³, Takashi Taniguchi³, Fan Zhang²*, Marc Bockrath¹*, Chun Ning Lau¹*

VALLEYTRONICS EN MATERIALES 2D

VALLEYTRONICS EN MATERIALES 2D

4. Optoelectrónica en Materiales 2D con baja simetría

1L-MoS

hBN

SiO₂

Si

Optoelectronics in 2D materials

 $V_{\rm g}$

Control parameters

- Illumination wavelength
- Polarization / helicity
- Light incidence angle
- Temperature
- Electric fields
- Magnetic field

OFF

100

80

60

t(ms)

40

Daniel Vaquero

20

 $\frac{V_{\rm g}}{V_{\rm ds}} = \frac{V_{\rm th}}{10} = 2 \dot{\rm V}$

120

anô

http://nanotech.usal.es/

Jorge Quereda

A typical measurement: Photocurrent spectroscopy

- 1. Light is absorbed through electronic interband transitions.
- 2. Carrier density increases.
- 3. Device conductivity increases.

COMMUNICATIONS PHYSICS | (2020)3:194 | https://doi.org/10.1038/s42005-020-00460-9 | www.nature.com/commsphys

Gate modulation of excitons and trions

COMMUNICATIONS PHYSICS | (2020)3:194 | https://doi.org/10.1038/s42005-020-00460-9 | www.nature.com/commsphys

DEPARTAMENTO DE FÍSICA FUNDAMENTAL

Grupo de Nanotecnología - Nanotech

iiGRACIAS POR SU ATENCIÓN!!

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

FONDO EUROPEO DE DESARROLLO REGIONAL

UNIÓN EUROPEA

Reunión de Nanolito - 13 de noviembre de 2020