video of Slaven Tepsic

Quantum NanoMechanics group Adrian Bachtold – ICFO

GRAPHENE FLAGSHIP

Clean room @ icfo

Johann Osmond

clocks

Cleland, Roukes, APL 1996

clocks

clocks

coupling vibrations to photons, electrons, spin, phonons ...

Key is the ultra long life time

Schliesser - Polzik

Kippenberg

 $\tau > 1$ minute

We like nanotube resonators

$Q \sim 10$ million

"giant" zero-point motion amplitude

Г

$$z_{zpm} = \sqrt{\frac{\hbar}{2m\omega_0}} \sim 10 \text{ pm}$$

$$(n)$$

$$($$

$$g_0 = \frac{F z_{zpm}}{\hbar}$$

$$g_0 = 2\pi \cdot 348 \text{MHz}$$

$$\omega_m = 2\pi \cdot 35.1 \text{ MHz}$$
(unpublished)

 $H_i = Fzn = \hbar g_0(a^+ + a)n$

nanotube resonator

nanotubes with unprecendeted transport quality

Yang, Urgell, De Bonis, Margańska, Grifoni, Bachtold, PRL 2020

helium superfluid – monolayer by monolayer

		Areal density $(atoms/nm^2)$	
	$f_0 (MHz)$	nanotube	graphite
Pristine substrate	36.34	0	0
First layer completed	34.41	11.0	11.4
Second layer completed	32.97	8.1	8.6
Third layer completed	31.69	7.2	7.6
Fourth layer completed	30.39	7.3	7.6

Noury, Vergara-Cruz, Morfin, Plaçais, Gordillo, Boronat, Balibar, Bachtold, PRL 2019

Urgell, Yang, De Bonis, Samanta, Dong, Jin, Bachtold, Nature Phys. 2020

qubit measurement Fabrication theory ICFO Andrew Cleland – university Chicago David Czaplewski – national Argonne labs Fabio Pistolesi – CNRS Grenoble Chris Møller, Roger Tormo

Pistolesi, Cleland, Bachtold, arxiv 2020

$$H = \hbar\omega_0 a^+ a + t\sigma_z + \hbar g_0 (a^+ + a)\sigma_x,$$

Optomechanics with nanotubes

Optical detection of nanotube vibrations

$$S_{FF}^{0.5} = 0.7 \frac{\text{aN}}{\sqrt{\text{Hz}}}$$
 @ 300K

A. Tavernarakis, A. Stavrinadis, A. Nowak, I. Tsioutsios, A. Bachtold, P. Verlot, Nature Com 2018

Controlled growth of one platinum particle with (10-100 nm)³ size

G Gruber, C Urgell, A Tavernarakis, A Stavrinadis, S Tepsic, C Magén, S Sangiao, JM De Teresa, P Verlot, A Bachtold, Nano letters (2019)

twisted bilayer graphene

Suspending twisted bilayer graphene

twisted graphene devices following Dima's fabrication

combining the two fabrication processes

suspended graphene fabricated 12 years ago

thanks

