Summer School Basics & Applications of Nanolithography, Jaca 16-19 July 2018

Advanced Scanning Probe Lithographies

i). Scanning Probe Lithography/ies

Force Microscope Context NanoLithographies

a. oxidation SPL

Principles

Protein & soft matter patterning Patterning 2D materials nanoscale FET transistors

b. thermal and thermochemical SPL 3D Patterning Graphene transistors

iv). Summary R. Garcia, ForceTool 30 1 - and offen the incention of force microsoft

VOLUME

THE KAVLI PRIZE 2016 Laureates

2016 KAVLI PRIZE NANOSCIENCE

Recognized "for the invention and realization of atomic force microscopy, a breakthrough in measurement technology and nanosculpting that continues to have a transformative impact on nanoscience and technology."

Top 1. | 2. { 3. (4. { 5. |

Gerd Binnig Former member of IBM Zurich Research Laboratory, Switzerland

Christoph Gerber University of Basel, Switzerland

Calvin Quate Stanford University, USA

Wood, J. The top ten advances in materials science. *Mater. Today* **11**, 40 (2008). Ball, P. Material witness: Greatest hits. *Nature Mater.* **7**, 102 (2008).

Molecular motors, H Seelertet, A. Engel, D.J. Muller (2000)

Polymers, R. Magerle (2004)

Nanopatterning, G. Binnig (1999)

Cells, R. Acvi (2007)

Atom identification, O. Custance, S. Morita et al. (2007)

Antibodies, A.S. Paulo, R. Garcia (2000)

Nanomechanical sensors J. Tamayo (2007)

ICMM

Probe lithography

Dynamic APM:

amplitude, frequency, phase shift (1988-2007)

T.R. Albrecht, P. Grütter, D. Rugar, JAP 69, 668 (1991)

Amplitude Modulation AFM feedback on the amplitude

Martin, Williams, Wickramasinghe JAP 61, 4723 (1987)

Contact : static deflection, $F=k\Delta z$ Binnig, Quate, Gerber (1986)

Contact AFM

- a single observable
- hard to control the force

1.5

2.0

Dynamic AM methods

- multiple data acquisition
- different feedback controls
- better control of the force
- fast

Amplitude modulation AFM (tapping mode AFM):

an image is formed by scanning the tip across the surface at a fixed oscillation amplitude.

CSIC

R. Garcia, Amplitude modulation atomic force microscopy, Wiley 2011

An image is acquired by displacing the tip across the sample and keeping one or severables observables at a fixed value (amplitude, frequency, phase shift, dissipation). The choice of the observable determines the name: Tapping mode AFM, frequency modulation AFM...

Amplitude modulation AFM (tapping mode AFM):

an image is formed by scanning the tip across the surface at a fixed oscillation amplitude.

Zhong et al. Surf. Sci. 290, L688 (1993); Anselmetti et al. Nanotechnology 5, 87 (1994); García, Pérez, Surf. Sci. Rep. 47, 197 (2002).

Instituto de Ciencia de Materiales de Madrid

R. García, Instituto de Microelectrónica de Madrid

Some steps in the evolution of AFM (1986-1996)

Integrated tip-microcantilevers: T.R. Albrecht, C. Quate (1990); J. Greshner (1991)

Optical beam deflection: G. Meyer, N.M. Amer (1998);

Dynamic AFM

Y. Martin, C. Williams, H.K. Wickramasinghe (1987);T.R. Albrecht, C. Quate (1990); P.K. Hansma (1994);W. Han, S.M. Lindsay (1996); J. Tamayo, R. Garcia (1996)

Commercial AFMs: Digital Instruments (1990)

1994

Lyo and Avouris, Si(111)7x7 (1991)

STM 1982 AFM 1986

García, WSe₂ (1992)

Morita et al. (2005)

Quantum corral, Fe on Cu(111) Crommie, Lutz, Eigler (1993)

Review atomic-scale manipulation by SPL: O. Custance, R. Perez, and S. Morita, *Nature Nanotechnology* **4**, 803-810 (2009).

Nanolithography: Requirements

Nanometer-scale motives

Reproducibility

Compatible with technological environments

Scalable

Throughput

NanoLithography: Throughput versus Feature Size

R. Garcia, A.W. Knoll, E. Riedo, Nature Nanotechnology 9, 577 (2014)

iCN

ForceTool

mechanical-SPL Nanomachining

Mechanical Force: Probe tip used to "plough" a soft layer

icmn

ForceTool

B) The AFM topographic image of Pablo Picasso's ' Don Quixote' that was carved in the surface of a polycarbonated film with an AFM tip

m-SPL nanoshaving and nanografting

A SAM is assembled on the surface

The AFM tip exerts a force on the SAM and removes the monolayer in a certain region (nanoshaving)

A diferent monolayer can be selfassembled in the swept region

atterning direction

(a)

(b)

CH3-(CH2)9-SH nanografted into a CH3-(CH2)17-SH SAM (400Å×400 Å)

Epifluorescence images of (a) a nanoshaved BSA monolayer and (b) SLB lines. The top line, which is ~200 nm in width, was used as a reference marke

J.J. Shi, J.X. Chen, P.S. Cremer, JACS 130, 2718 (2008)

A.A. Tseng et al. Small7, 3409 (2011)

Nanoscale Dispensing (NADIS)

Tip with a 200 nm aperture at its apex made it by focused-ion-beam milling

Pattern 'liquids'

Versatile (ambient condition)

Integration of fluidic system possible

Glycerol on SiO2, image size (10 x 10) μm^2

A. Meister et al. APL 85, 25 (2004)

ForceTool

Parallel probes for multimaterial deposition

FluidFM: Combining Atomic Force Microscopy and Nanofluidics in a Universal Liquid Delivery System for Single Cell Applications and Beyond

André Meister,^{1,§} Michael Gabi,^{1,§} Pascal Behr,[‡] Philipp Studer,^{‡,II} János Vörös,[‡] Philippe Niedermann,[†] Joanna Bitterli,[†] Jérôme Polesel-Maris,^{†,⊥} Martha Liley,[†] Harry Heinzelmann,[†] and Tomaso Zambelli^{*,‡}

 1a
 AFM laser (force control)

 tubing
 drilied AFM probeholder

 buffer solution
 microchanneled AFM cantilever

 glass slide

NANO LETTERS

2009 Vol. 9, No. 6

2501-2507

Dip Pen SPL (dp-SPL)

Transport of molecules to the surface via water meniscus

ForceTool

K. Salaita, Y. Wang, C.A. Mirkin, Nat. Nanotechnol. 2, 145-155 (2007); R.D. Piner,..., C.A. Mirkin, Science 282, 661 (1999)

'Bottom	up' aproximation : Writing of a pen
Pen	→ AFM Tip
Ink	Molecular solution
Paper	→ Surface substrate

M. Hirtz et al. Nat. Commun. 4, 2591 (2013)

Figure 7 | Proposed membrane organization on silicon dioxide and graphene. DOPC headgroups are marked in red, Biotin-PE headgroups in green. (a) Base monolayer and additional bilayer on silicon dioxide in air, (b) single bilayer on graphene in air and (c) monolayer of phospholipids on graphene surrounded by BSA layer under water. Streptavidin can later be bound to the biotinylated headgroups of the phospholipids from solution (d) with BSA and DOPC preventing unspecific binding to the substrate.

Silicon dioxide

Oxidation SPL:

García, Calleja, Perez-Murano, Applied Physics Letters (1998)

icm

ForceTool

Oxidation SPL: basics

LOCAL OXIDATION NANOLITHOGRAPHY 200 nm

1st observations with STM (serendiping)

J.A. Dagata et al. Appl. Phys. Lett. 56, 2001 (1990) T. Thundat et al. J. Vac. Sci. Technol. A 8, 3527 (1990)

o-SPL with AFM (contact mode)

H. C. Day and D. R. Allee, Appl. Phys. Lett., 1993, 62, 2691.

o-SPL in AFM non-contact mode (extended tip lifetime)

R. Garcia, M. Calleja, F. Pérez-Murano, Appl. Phys. Lett. (1998)

Role of humidity

P. Avouris, T. Hertel and R. Martel, Appl. Phys. Lett., 1997, 71, 287.

Liquid meniscus

R. Garcia, M. Calleja and H. Rohrer, J. Appl. Phys., 1999, 86, 1898.

Y.K. Ryu, R. Garcia*, Nanotechnology 28, 142003*(2017); R. Garcia, RV. Martinez, J. Martinez, Chem. Soc. Rev. (2006)

Oxidation SPL

dielectric barriers Templates Masks

STM	dynam	h A	nigh speed AFM	
1990 19	93 1994- 1993-1	1998 999 199	98-2004	2009
cor AF	ntact mer M	niscus k	kinetics	
Si. Ta. Nb. 1	∵i.GaAs or	aphene	transitio dichalco	n metal genides
Si, Ta. Nb, T 1990-199	i, GaAs gr	aphene	transition dichalco 201	n metal genides 15-2016
Si, Ta. Nb, T 1990-199 1995-200	Fi, GaAs gr 98 20 05 2003-	aphene 008-2011 2010	transition dichalco 201	n metal genides 15-2016 2016

Metal-oxide transistors	Quant (III-V c	um device compound	es graphe s) device	ene s	TMD devices
1995-1998	19	98-2002	2008-20	13	2015-2016
1997-20	08	2002-	2011	2	007-2012
Single electro	on s	Si nanowir	e devices	op	otical devices

ForceTool

icm

O-SPL instruments

2006-present

SPACE CHARGE MODEL FOR LOCAL OXIDATION

Silicon case

Electrolyte: $2H_2O \rightarrow 2H^++2(OH^-)$ Anode: $Si+2h^++2(OH^-) \rightarrow SiO_2+H_2$ Cathode: $2H^++2e^- \rightarrow H_2$

Kelvin Probe AFM measurements

The local oxidation process negative space charge build-up

Oxide size vs voltage and pulse duration

Calleja, García, APL 76, 3427 (2000)

Field-induced formation of water bridges

E=2 GV/m= 2 V/nm

time=75 ps

Meniscus height 3 nm

MD by F. Zerbetto and T. Cramer, UBologna 1014 molecules

Cramer, Zerbetto and Garcia, Langmuir 24, 6116 (2008)

Oxidation Scanning Probe Lithography

Reproducibility

array of 6000 dots

(45%, 1 ms, 27V, A₀~ 5 nm) 50 nm periodicity

Resolution

R. Garcia, ForceTool

iCN

Oxidation Scanning Probe Lithography: Minimum feature size

icmm

ForceTool

o-SPL:

Direct Nanppatterning a large variety of materials

Та

Niobium

graphene

silicon

CAPITUL O PRIMERO

Que trata de la condición y ejercicio del famoso yvaliente hidalgo don Quijote de la Mancha

En un lugar de la Mancha, de cuvo nombre no quiero acordarme, no ha mucho tiempo que vivía un hidalgo de los de lanza en astillero, adarga antigua, rocín slaco y galgo corredor. Una olla de algo más vaca que carnero, salpicón las más noches, duelos y quebrantos los sábados, lente jas los viernes, algún palomino de añadidura los domingos, consumían las tres partes de su hacienda.

ForceTool

<u>1000 nm</u>

icmn

SAM templates

WSe2

Metals, semiconductors, Organosilanes...

TECHNOLOGY CN.com. 'Don Quixote' paragraph fits on a chip

Thursday, April 7, 2005 Posted: 7:48 AM EDT (1148 GMT)

MADRID, Spain (AP) -- Physicists in Spain are celebrating the 400th anniversary of publication of "Don Quixote" in a very small way: they wrote the first paragraph on a silicon chip in letters so tiny the whole 1,000-page book would fit on the tips of six human hairs.

PRIMERA PARTE DELINGENIOSO hidalgo don Quixote de la Mancha.

Capitulo Primero. Que trata de la condicion, y exercicio del famoso bidalgo don Quixote de la Mancha.

icmm

N Vn lugar de la Mancha, de cuyo nombre no quiero acordarme, no ha mucho tiempo que viuia vn hidalgo de los de lança en attillero, adarga antigua, rozin flaco, y galgo corredor. Vna olla de algo mas vaca que carnero, falpicon las mas noches, duelos y quebrátos los

Sabados, lantejas los Viernes, algun palomino de añadidura los Domingos: confumian las tres partes de fu hazienda. El refto della concluian, fayo de velarre, calças de velludo paralas fieftas, con fus pantuflos de **5 cm** A lo

CAPITUL O PRIMERO

Que trata de la condición y ejercicio del famoso yvaliente hidalgo don Quijote de la Mancha

En un lugar de la Mancha,

de cuyo nombre no quiero acordarme, no ha mucho tiempo que vivía un hidalgo de los de lanza en astillero, adarga antigua, rocín slaco y galgo corredor. Una olla de algo más vaca que carnero, salpicón las más noches, duelos y quebrantos los sábados, lentejas los viernes, algún palomino de añadidura los domingos, consumían las tres partes de su hacienda.

1µm

R. Garcia, ForceTool

 m

 2.50

 R. Proksch (2016)

 -1.00

 _2μm

.0 nm -

Template growth of Molecular Arquitectures

12 nm

, Ramsés V. Martínez¹, Marco Chiesa¹ Javier Martínez¹, Ricardo Garcia¹, Eugenio Coronado², Elena Pinilla-Cienfuegos², Sergio Tatay²

¹Instituto de Microelectrónica de Madrid, CSIC, Spain ²Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Spain

Ferritin

1

pH = 3

FERRITIN

• Spherical Iron Storage Protein, Hollow Shell Containing Iron Atoms

Shell Consists of 24 Subunits (apoferritin)

with an ferrihydrite core $(FeOOH)_8(FeOOPO_3H_2)$

Superparamagnetic Properties

Isolectric point at pH=4.5

• Apoferritin $\ \rightarrow$ Hollow Shell without Magnetic Core

pH = 6

pH = 10

R.V. Martinez, J. Martinez, M. Chiesa, R. Garcia, E. Coronado, E. Pinilla-Cienfuegos, S. Tatay, *Adv. Mater.* **22**, 588 (2010)

R. Garcia, ForceTool

IC

Controlled positioning at neutral pH

Protein patterning with 10 nm feature size

R.V. Martinez, M. Chiesa, R. Garcia, Small 7, 2914 (2011) R.V. Martinez *et al.*, Adv. Mater. 22, 588 (2010) R.V. Martinez *et al.*, Adv. Mater. 19, 291 (2007)

icm

ForceTool

Creation of guiding patterns for directed self assembly of block co-polymers by O-SPL

AFM phase image

in-situ nanofabrication of metal-semiconductor-organic interfaces

OTS= n-octadecyltrichlorosilane CH3-(CH2)17-SiCl3)

R. Maoz, S.R.Cohen and J. Sagiv. Advanced Materials 1 (1999) J. Berson, A. Zeira, R. Maoz and J. Sagiv. *Beilstein Journal of Nanotechnology* 3 (2012)

o-SPL on self-assembled monolayers: Interplay SAM vs. Silicon oxidation

Regimes of oxidation:

T.Druzhinina, S. Hoeppener, N. Herzer and U.S. Schubert. *Journal of Materials Chemistry* 21 (2011)

Instituto de Ciencia de Materiales de Madrid

Mask Fabrication

I: substrate **III: Etching SOI: Silicon on insulator** II: o-SPL 12 nm SiO₂ mask Si layer SINW BOX:SiO₂ nm , вох // Si layer BOX Value **RIE Parameters** Si buffer rf-power 10 W **Chamber pressure** 90 mTorr SF₆:O₂ proportion 12:3 sccm **Etching time** 126 s Y.K. Ryu et al. Appl. Phys. Lett. 104, 223112 (2014) ICMM

SiNWs after pattern transfer

SiNWs

SiNW thickness as a function of the thickness of the mask

Silicon Nanowires by Oxidation SPL

Steps:

1: SOI wafer, 2: Intitial metallization, 3: Oxide mask; 4: dry etching; 5: 2nd metallization

Transistor: three terminal device Field-effect transistor: The current is modified by the electrical field of the gate

SiNW biosensors general sensing principle

the current measured is affected by the molecular interactions

M. Chiesa et al. Nano Letters 12, 1275 (2012)

f

ForceTool

12, 1275-1281 (2012)

Detection of the Early Stage of Recombinational DNA Repair by Silicon Nanowire Transistors

Marco Chiesa,[†] Paula P. Cardenas,[‡] Francisco Otón,[§] Javier Martinez,[†] Marta Mas-Torrent,[§] Fernando Garcia,[†] Juan C. Alonso,[‡] Concepció Rovira,[§] and Ricardo Garcia^{*,†}

RecA forms a polymorphic right-handed helix around the DNA with approximately six monomers per helix turn

SsbA is a protein that competes with RecA for the binding sites along the DNA chain

RecA: M_w = 38 kDa, d=27Å SsbA: M_w = 18.8 kDa per subunit

Instituto de Ciencia de Materiales de Madrid

SiNW functionalization to improve selectivity

SiNW functionalization improves molecule adsorption and selectivity which improves reproducibility

ICM

Biosensing Principle

•SiNW measures changes in the resistance

• The resistance of the SiNW is sensitive to changes in the charges in the nanowire-liquid interface

• The minimum in R is due to dATP hydrolysis (dADP+ Pi) This reaction reduces the negative charge surrounding the SiNW (like a positive gate)

Ion-transport device patterned by constructive lithography

Quantum devices on crystalline semiconductors by o-SPL

K. Ensslin et al. PRB 87, 245406 (2013); R.J. Haug et al. PRL 116, 096802 (2016)

M. Buitelaar et al. APL 103, 18117 (2013)

Direct patterning of 2D electronic materials

S. Neubeck , A.K Geim, K.S. Novoselov et al. Small 6, 1469 (2010)

L-S. Byun et al., ACS Nano 5, 6417 (2011)

o-SPL GARAPHENE PATTERNS

Chemical & structural characterization

(b) RH=46,7% Tip-sample distance ≈7 nm V=37V t=1 ms 2 nm step

A. I. Dago, S. Sangiao, F. Rodriguez, J.M. de Teresa, R. Garcia, *Carbon* **129**, 281 (2018)

ForceTool

icmm

(c) RH=57% V=20,4-20,1 V t=0,7 ms A0 \approx 7-8 nm 1020 points \rightarrow 2 nm limit in lateral resolution

A. I. Dago, S. Sangiao, F. Rodriguez, J.M. de Teresa, R. Garcia, Carbon 129, 281 (2018)

Direct fabrication of 2D Transition Metal Dichalcogenides devices: WSe₂

A. I. Dago, Y.K. Ryu, R. Garcia, Appl. Phys. Lett. 109, 163103 (2016)

Devices

icmm

ForceTool

Direct fabrication of 2D Transition Metal Dichalcogenides devices: MoS₂

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Qing Hua Wang,Kourosh Kalantar-Zadeh, , Andras Kis, Jonathan N. Coleman and Michael S. Strano. *Nature Nanotechnology* **7**, 699 (2012)

icm

ForceTool

F.M. Espinosa et al. APL 106, 103503 (2015)

ICMM

o-SPL on self-assembled monolayers:

Monolayer Pattern

S. Hoeppener, R. Maoz and J. Sagiv. Nano Letters 3 (2003)

Up-scaling: Parallel oxidation SPL

Molecular architectures: Parallel patterning Template growth Mn₁₂bet (on nano-oxides) and ferritin:

Field-induced chemical reactions Carbon Dioxide reduction

ForceTool

icm

Thermal Scanning Probe Lithography: Method

Silicon cantilever

- Microheater: 2x4 μm²
- → up to 1000 ºC heater T

Stiffness ~ 1 N/m
Resonance frequency 150 kHz

Resist

Unzipping polymer PPA (polypthalaldehyde)

Writing

Heated tip evaporates resist

D. Pires et al., Science, 328, 732-735 (2010)

Thermal sensor for height signal Wear less imaging: AC modulation >1 MHz

A. Knoll et al., Nanotechnology, 21, 185701 (2010)

Coulembier et al., Macromolecules, 43, 572-574 (2010)

Force control

electrostatic actuation
 (~1 μs pull-in time)

High speed patterning 880x880 pixels in 11.8s

500 kHz pixel clock

A. W. Knoll et al., Adv. Mater., 22, 3361-3365 (2010)

Thermal Scanning Probe Lithography: The set-up

Thermal Cascade

Limitation in heater temperature:

Dopant diffusion vs. Silicon diffusion \rightarrow Phosphorous

Thermal bottleneck: Assumptions:

5 nm silicon tip, opening angle 30...60° **Result:**

- $T_{polymer} \sim 0.3...0.6 T_{heater}$ $T_{polymer,max} \sim 300-400^{\circ}C$

Chemical reaction:

thermally activated process $\leftarrow \rightarrow$ time temperature superposition

1 s to 1 µs $\rightarrow \Delta T \sim 200^{\circ}C$!

Thermally sensitive material required ! T_{conv} ~ 150..200 C

Material Strategy

Features of tSPL

Resolution: 10 nm HP

Depth: 4 nm

Corresponds to tip shape:

Features:

Resolution: ~ 10 nm

Speed:

- \rightarrow 500 MHz imaging (2 us pixel time)
- ightarrow 666 kHz imaging (1.5 us pixel time)

Resonance frequency : 150 kHz

500 kHz patterning

666 kHz imaging

Fractal pattern Size 13x13 µm² 7.5 mm/s 880x880 pixels Write duration: 11.8 s

Paul et al., Nanotechnology 22, 275306 (2011).

Molecular Glass: Patterning Results

Half Pitch Resolution after Pattern Transfer

[1] L. Cheong et al., Nano Lett., 13, 4485 (2013). [2] Wolf et al., J. Vac. Sci. Technol. B, 33, 02B102 (2015).

High resolution thermal scanning probe lithography

SiNWs 14 nm and 16 nm half-pitch

'Sub-10 nanometer feature size in silicon using thermal scanning probe lithography' Y.K.R.Cho, C. D. Rawlings, H. Wolf, M. Spieser, S. Bisig, S. Reidt, M. Sousa, S. R. Khanal, T. D. B. Jacobs, A. W. Knoll

ACS Nano 11, 11890 (2017)

Molecular Glass: Complex 3D-Structures

- Matterhorn (Swiss Alps) Topographical data from geodata © Swisstopo
- Multilevel patterning
 - 120 levels

(photographer: Marcel Wiesweg; source: Wikimedia)

3-D Direct Writing Using Unzip Polymers

Adapted from GTOPO30, U.S. Geological Survey, http://eros.usgs.gov

500 nm

Written replica

Patterning depth controlled by writing force → direct writing of 3D relief structures in one shot

World Map: 250 nm of SAD polymer on Si 5x10⁵ pixels

60 µs pixel

Total patterning time 143 s

Photo portrait Area= 6 cm²

Scanning probe lithography pattern and image: Area= 12x10⁻⁸ cm²

Richard Feymann

A. W. Knoll, R. Garcia, A. Knoll, E. Riedo, Nature Nanotechnol. 9, 577 (2014)

tc-SPL to perform Nanoscale tunable reduction of graphene oxide

E. Riedo et al. Science (2010)

Scanning Probe Lithographies

Variety of approaches Research friendly Incorporates Intrinsic metrology

• Direct nanopatterning of materials

•Applicable to many materials: semiconductors, metals, organics, biomolecules

•Low-cost approach for nanoscale device fabrication

Limitations

Advantad

•Extensive patterning requires the use of several tips (slow)

Fast writing and large areas

•True 3D nanoscale patterning Limitations

Requires specific cantilevers

Requires resist

Advantages

Acknowledgements

Thank you for your attention !

ICMM

Yu Kyoung Ryu

Francisco M. Espinosa

Arancha I. Dago

Former members

Marco Chiesa

J. Martinez

R.V. Martinez

Single Nanometer Manufacturing for beyond CMOS devices (SNM)

Funded by the European Union

External collaborators

Jose M. de Teresa, CSIC Soraya Sangiao, U. Zaragoza Francesc Perez-Murano, CSIC Juan Carlos Alonso, CNB-CSIC Fabio Biscarini, CNR, Italy Eugenio Coronado, UValencia Andras Kis, EPFL, Switzerland Armin W. Knoll, IBM Zurich Elisa Riedo, Georgia Inst. Technol., USA Concepció Rovira, ICMB-CSIC

