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Continuous scientific achievements for the electronics industry
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Year 2003: the gate dielectric oxide cannot get thinner

Tunnel current not sustainable

Evolution and materials science
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Development in materials science

Evolution and materials science
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New generation of devices based on a new material: HfO2

Evolution and materials science
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30% less required power

30% larger output current

Evolution and materials science
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Year 2010: the gate has not enough efficiency

Evolution and electronic engineering
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50% less required power

25% better performance

Evolution and electronic engineering

Transistor Fin Optimization

20

22 nm Process 14 nm Process

1st generation Tri-gate 2nd generation Tri-gate
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Evolution and fabrication developmetns

From 2001 developing EUV lithography. Finally into the market
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Evolution in the Electronics Industry. Issues
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Evolution in the Electronics Industry. Issues
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Partial summary

Evolution unseen in any other industrial sector in the whole human history

Potential issues have been solved by intensive research

New materials can offer new solutions and new opportunities

New materials lead to new physics
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The rise of graphene

First images of graphene as monolayer

Serendipity and research go together
 PROGRESS ARTICLE

nature materials | VOL 6 | MARCH 2007 | www.nature.com/naturematerials 185

at stake, rapid progress in this direction is expected. Th e approach 
that seems promising but has not been attempted yet is the use of the 
previously demonstrated epitaxy on catalytic surfaces28,29 (such as Ni 
or Pt) followed by the deposition of an insulating support on top of 
graphene and chemical removal of the primary metallic substrate.

THE ART OF GRAPHITE DRAWING

In the absence of quality graphene wafers, most experimental groups 
are currently using samples obtained by micromechanical cleavage 
of bulk graphite, the same technique that allowed the isolation 
of graphene for the fi rst time7,8. Aft er fi ne-tuning, the technique8 
now provides high-quality graphene crystallites up to 100 μm in 
size, which is suffi  cient for most research purposes (see Fig. 2). 
Superfi cially, the technique looks no more sophisticated than drawing 
with a piece of graphite8 or its repeated peeling with adhesive tape7 
until the thinnest fl akes are found. A similar approach was tried by 
other groups (earlier35 and somewhat later but independently22,36) but 
only graphite fl akes 20 to 100 layers thick were found. Th e problem 
is that graphene crystallites left  on a substrate are extremely rare 
and hidden in a ‘haystack’ of thousands of thick (graphite) fl akes. 
So, even if one were deliberately searching for graphene by using 
modern techniques for studying atomically thin materials, it would 
be impossible to fi nd those several micrometre-size crystallites 
dispersed over, typically, a 1-cm2 area. For example, scanning-probe 
microscopy has too low throughput to search for graphene, whereas 
scanning electron microscopy is unsuitable because of the absence 
of clear signatures for the number of atomic layers.

Th e critical ingredient for success was the observation that 
graphene becomes visible in an optical microscope if placed on top 
of a Si wafer with a carefully chosen thickness of SiO2, owing to a 
feeble interference-like contrast with respect to an empty wafer. If 
not for this simple yet eff ective way to scan substrates in search of 
graphene crystallites, they would probably remain undiscovered 
today. Indeed, even knowing the exact recipe8, it requires special 
care and perseverance to fi nd graphene. For example, only a 5% 
diff erence in SiO2 thickness (315 nm instead of the current standard 
of 300 nm) can make single-layer graphene completely invisible. 
Careful selection of the initial graphite material (so that it has largest 
possible grains) and the use of freshly cleaved and cleaned surfaces 
of graphite and SiO2 can also make all the diff erence. Note that 
graphene was recently37,38 found to have a clear signature in Raman 
microscopy, which makes this technique useful for quick inspection 
of thickness, even though potential crystallites still have to be fi rst 
hunted for in an optical microscope.

Similar stories could be told about other 2D crystals 
(particularly, dichalcogenide monolayers) where many attempts 
were made to split these strongly layered materials into individual 
planes39,40. However, the crucial step of isolating monolayers to 
assess their properties individually was never achieved. Now, 
by using the same approach as demonstrated for graphene, it 
is possible to investigate potentially hundreds of diff erent 2D 
crystals8 in search of new phenomena and applications.

FERMIONS GO BALLISTIC

Although there is a whole new class of 2D materials, all 
experimental and theoretical eff orts have so far focused on 
graphene, somehow ignoring the existence of other 2D crystals. It 
remains to be seen whether this bias is justifi ed, but the primary 
reason for it is clear: the exceptional electronic quality exhibited 
by the isolated graphene crystallites7–10. From experience, people 
know that high-quality samples always yield new physics, and 
this understanding has played a major role in focusing attention 
on graphene.

Graphene’s quality clearly reveals itself in a pronounced 
ambipolar electric fi eld eff ect (Fig. 3) such that charge carriers 
can be tuned continuously between electrons and holes in 
concentrations n as high as 1013 cm–2 and their mobilities µ can 
exceed 15,000 cm2 V–1 s–1 even under ambient conditions7–10. 
Moreover, the observed mobilities weakly depend on temperature 
T, which means that µ at 300 K is still limited by impurity scattering, 
and therefore can be improved signifi cantly, perhaps, even up to 
≈100,000 cm2 V–1 s–1. Although some semiconductors exhibit room-
temperature µ as high as ≈77,000 cm2 V–1 s–1 (namely, InSb), those 
values are quoted for undoped bulk semiconductors. In graphene, 
μ remains high even at high n (>1012 cm–2) in both electrically and 
chemically doped devices41, which translates into ballistic transport 
on the submicrometre scale (currently up to ≈0.3 μm at 300 K). A 
further indication of the system’s extreme electronic quality is the 
quantum Hall eff ect (QHE) that can be observed in graphene even at 
room temperature, extending the previous temperature range for the 
QHE by a factor of 10 (ref. 42).

An equally important reason for the interest in graphene is 
a particular unique nature of its charge carriers. In condensed-
matter physics, the Schrödinger equation rules the world, usually 
being quite suffi  cient to describe electronic properties of materials. 
Graphene is an exception — its charge carriers mimic relativistic 
particles and are more easily and naturally described starting with 
the Dirac equation rather than the Schrödinger equation4–6,43–48. 

0 9 Å 13 Å

1 µm

10 µm

1 µm

Crystal faces

a b

c

Figure 2 One-atom-thick single crystals: the thinnest material you will ever see. 
a, Graphene visualized by atomic force microscopy (adapted from ref. 8). The folded 
region exhibiting a relative height of ≈4 Å clearly indicates that it is a single layer. 
(Copyright National Academy of Sciences, USA.) b, A graphene sheet freely suspended 
on a micrometre-size metallic scaffold. The transmission electron microscopy image 
is adapted from ref. 18. c, Scanning electron micrograph of a relatively large graphene 
crystal, which shows that most of the crystal’s faces are zigzag and armchair edges 
as indicated by blue and red lines and illustrated in the inset (T.J. Booth, K.S.N, P. Blake 
and A.K.G. unpublished work). 1D transport along zigzag edges and edge-related 
magnetism are expected to attract signifi cant attention.

nmat1849 Geim Progress Article.i185   185nmat1849 Geim Progress Article.i185   185 8/2/07   16:22:288/2/07   16:22:28

K.S. Novoselov et al., Science 306, 666 (2004) 
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The rise of graphene

The most important scientific topic in the last few decades (not only in CM)

A. Ferrari et al., Nanoscale 7, 4598 (2015) 
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The rise of graphene

Full fabrication process. From low to high-tech

K.S. Novoselov et al., Science 306, 666 (2004) 

Recipe for making a graphene transistor
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The rise of graphene

Full fabrication process. From low to high-tech

K.S. Novoselov et al., Science 306, 666 (2004) 

Plus some nanotechnology…
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The rise of graphene

Graphene (however) has quite a long history behind

D. Dreyer et al., Angew. Chem. Int. Ed. 49, 9336 (2010) 

foundations of graphene science, we first examine the history
of graphene and chemically modified graphenes (CMGs),
some of which predate IUPAC recognition (Figure 1).

2. History of Graphene

A discussion of the history of graphene would be
incomplete without a brief mention of graphite oxide (GO),
graphene oxide (i.e., exfoliated GO), and graphite intercala-
tion compounds (GICs), as currently graphene and a related
material called “reduced graphene oxide (r-GO)” (see below)
are frequently prepared by the manipulation of GO and
graphene oxide, which, remarkably, have been studied
extensively for more than 170 years.[36–40]

The earliest reports of GO andGICs can be traced back to
the 1840s, when the German scientist Schafhaeutl reported
the intercalation (that is, insertion of a small-molecule species,
such as an acid or alkali metal, in between the carbon
lamellae) and exfoliation of graphite with sulfuric and nitric
acids.[36–38] A wide range of intercalants and exfoliants have
been used since that time, including potassium (as well as
other alkali metals), fluoride salts of various types, transition
metals (iron, nickel, and many others),[41–44] and various
organic species.[45] The stacked structure of graphite is
retained in GICs, but the interlayer spacing is widened, often
by several angstroms or more, which results in electronic
decoupling of the individual layers. This electronic decoupling
leads, in some cases, to intriguing superconductivity effects:[46]

a harbinger of the extraordinary electronic properties later
demonstrated in freestanding graphene. In fact, the term
“graphene” grew out of the chemistry of GICs as the need for
language to describe the decoupled layers became appar-
ent.[31,32] (To the best of our knowledge, the term graphene
was first coined by Boehm et al. in 1986.[32]) It was later
reasoned that if the interlayer spacing of GICs could be
extended throughout the entire structure, and the small-
molecule spacers removed, pristine graphene may be ob-
tained.[47]

In 1859, the British chemist Brodie used what may be
recognized as modifications of the methods described by

Schafhaeutl in an effort to characterize the molecular weight
of graphite by using strong acids (sulfuric and nitric), as well
as oxidants, such as KClO3.[48,49] The use of these conditions

Figure 1. Timeline of selected events in the history of the preparation, isolation, and characterization of graphene.
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The rise of graphene

There are many graphenes today in the market with different production schemes

D. Dreyer et al., Angew. Chem. Int. Ed. 49, 9336 (2010) 
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The rise of graphene

There are many graphenes today in the market with different production schemes

D. Dreyer et al., Angew. Chem. Int. Ed. 49, 9336 (2010) 

Method
Mechanical 

exfoliation of 
graphite

Growth on 
metal 

substrates

Decomposition 
of SiC

Chemical 
exfoliation of 

graphite

Reduction of 
graphene 

oxide

Quality Excellent Good Good Average

Size 10-100 μm ∞ SiC wafer size nm to μm nm to μm

Transfer Yes Yes No Yes Yes

Scalability No Yes Yes Yes Yes
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The rise of graphene

Graphene as a carbon allotrope
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Graphene. Electronic structure

3 sp2 orbitals
1 pz orbital

Hexagonal lattice
1 pz orbital at each site

Carbon 6C= 1s2 2s2 2p2

Mixing of 2s, 2px, 2py, 2pz orbitals

1/3 each of 6 atoms 
= 2 atoms

Two 
atoms
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Graphene. Electronic structure
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The energy bands of graphene at low energies are described by a 2D Dirac-like equation 

with linear dispersion near K/K’ in k space
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Graphene. Electronic structure

Graphene is so special (for us) because of the Dirac fermions and its peculiar DOS

In standard conductors, E(p)=p2/2m

In graphene, instead, E(p)=vp
What is so special about graphene ?

Normal conductor

Graphene

Dirac fermions

Fermions
Graphene and graphite nanoribbons 353

Figure 2 Low energy DFT 3D band structure and its projection on kx close to k point K (!/a*[2/3, 0.0 0.0]) for (a) graphene,
(b) bilayer graphene, (c) trilayer graphene and (d) graphite. (a) shows the characteristic Dirac point of graphene. The Dirac point
(i.e., relativistic fermion characteristic) is lost in bilayer graphene (b), but appears again in trilayer graphene (c); (d) shows the 3D
graphite structure which displays a semimetallic band structure with parabolic-like bands. The Fermi level has been set at zero in
all cases.

STM tip [19] appeared ahead of its time and did not receive
much attention. The relatively easy production of graphene
using Novoselov’s method, and the peculiar properties of
this 2D atomic crystal have heavily stimulated an extensive
study of graphene for the first time. New carbon struc-
tures with sp2 hybridization, such as bilayer and few-layer
graphene, graphene and graphitic nanoribbons have subse-
quently emerged, each with novel and unusual properties
(Fig. 2).

The series of events described above clearly demonstrate
that carbon is a fascinating element and is able to form
various morphologies at the nanoscale, possessing differ-
ent physicochemical properties, some of them yet unknown.
There are several reviews and dedicated journal issues on
the synthesis and properties of graphene (see, for instance
[20,21]). However, the other sp2 hybridized carbon struc-
tures that have emerged from the study of graphene deserve
as much of attention as graphene. This review intends to
summarize the latest theoretical and experimental advances
related to novel one- and two-dimensional layered carbon
(sp2 hybridized).

The different types of graphene-like
nanostructures

By looking at the different morphologies of graphene-based
nanostructures discovered so far, and all other possibilities

still to be found, it is important to provide some important
definitions related to different sp2-like hybridized nanocar-
bons. In this manuscript the following definitions regarding
graphene-like structures will be used:

Graphite: A 3D system

We can define graphite as an infinite three-dimensional
crystal made of stacked layers consisting of sp2 hybridized
carbon atoms (Fig. 1g); each carbon atom is connected
to other three making an angle of 120◦ with a bond
length of 1.42 Å. Depending on the layers stacking, these
crystals could be hexagonal (ABABAB. . .) or rhombohedral
(ABCABC. . .). The hexagonal and rhombohedal structures
belong to the P63/mmc (194) and R-3m (166) space groups,
respectively. In both 3D crystals, the layers interact weakly
through van der Waals forces. Graphite crystals can be found
naturally, and can also be artificially synthesized by ther-
molytic processes; such as the production of highly oriented
pyrolytic graphite (HOPG).

Graphene: A 2D system

A graphene crystal is an infinite two-dimensional layer con-
sisting of sp2 hybridized carbon atoms (Fig. 1f), which
belongs to one of the five 2D Bravais lattices called the
hexagonal (triangular) lattice. It is noteworthy that by pil-
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Graphene. Electronic structure

Graphene is so special (for us) because of the Dirac fermions and its peculiar DOS

In standard conductors, E(p)=p2/2m

In graphene, instead, E(p)=vp
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Graphene. Electronic structure

Pseudo-spin represents carriers in indiscernible sub-lattices

Hamiltonian with pseudospin-1/2 parallel or anti-parallel to momentum (K, K’)

Orbits in k-space have Berry’s phase of π
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Partial summary

Graphene appears as a product of an on-going research in electronic materials

Disruptive electronic structure unheard of in other materials

Theoreticians love it. They can apply all they had already calculated!

New materials lead to new physics

Now we can move to the electronic measurements
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Early measurements of carrier mobility in field-effect transistor geometries
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where S(E) ¼ p k2 is the area in k-space of the orbits at the Fermi
energy E(k) (ref. 13). If these expressions are combined with the
experimentally found dependencesm c / n1/2 and BF ¼ (h/4e)n it is
straightforward to show that S must be proportional to E2, which
yields E / k. The data in Fig. 3 therefore unambiguously prove the
linear dispersion E ¼ !hkc * for both electrons and holes with a
common origin at E ¼ 0 (refs 11, 12). Furthermore, the above
equations also imply m c ¼ E/c *

2 ¼ (h2n/4p c *
2)1/2 and the best fit

to our data yields c * < 106 m s21, in agreement with band structure
calculations11,12. The semiclassical model employed is fully justi-
fied by a recent theory for graphene14, which shows that SdHO’s
amplitude can indeed be described by the above expression
T/sinh(2p 2kBTm c/!heB) with m c ¼ E/c *

2. Therefore, even though
the linear spectrum of fermions in graphene (Fig. 3e) implies zero
rest mass, their cyclotron mass is not zero.

The unusual response of massless fermions to a magnetic field is
highlighted further by their behaviour in the high-field limit, at
which SdHOs evolve into the quantum Hall effect (QHE). Figure 4
shows the Hall conductivity jxy of graphene plotted as a function of
electron and hole concentrations in a constant B. Pronounced QHE
plateaux are visible, but they do not occur in the expected sequence
jxy ¼ (4e2/h)N, where N is integer. On the contrary, the plateaux
correspond to half-integer n so that the first plateau occurs at 2e2/h
and the sequence is (4e2/h)(N þ 1/2). The transition from the lowest
hole (n ¼ 21/2) to the lowest electron (n ¼ þ1/2) Landau level (LL)
in graphene requires the same number of carriers (Dn ¼ 4B/
f0 < 1.2 £ 1012 cm22) as the transition between other nearest levels
(compare the distances between minima in rxx). This results in a
ladder of equidistant steps in jxy that are not interrupted when
passing through zero. To emphasize this highly unusual behaviour,
Fig. 4 also shows j xy for a graphite film consisting of only two
graphene layers, in which the sequence of plateaux returns to normal
and the first plateau is at 4e2/h, as in the conventional QHE. We
attribute this qualitative transition between graphene and its two-
layer counterpart to the fact that fermions in the latter exhibit a finite
mass near n < 0 and can no longer be described as massless Dirac
particles.
The half-integer QHE in graphene has recently been suggested by

two theory groups15,16, stimulated by our work on thin graphite films7

but unaware of the present experiment. The effect is single-particle
and is intimately related to subtle properties of massless Dirac
fermions, in particular to the existence of both electron-like and
hole-like Landau states at exactly zero energy14–17. The latter can be
viewed as a direct consequence of the Atiyah–Singer index theorem
that is important in quantum field theory and the theory of super-
strings18,19. For 2D massless Dirac fermions, the theorem guarantees
the existence of Landau states at E ¼ 0 by relating the difference in
the number of such states with opposite chiralities to the total flux
through the system (magnetic field can be inhomogeneous).

Figure 1 | Electric field effect in graphene. a, Scanning electron microscope
image of one of our experimental devices (the width of the central wire is
0.2 mm). False colours are chosen to match real colours as seen in an optical
microscope for large areas of the same material. b, c, Changes in graphene’s
conductivity j (b) and Hall coefficient RH (c) as a function of gate voltage
Vg. j and RH were measured in magnetic fields B of 0 and 2T, respectively.
The induced carrier concentrations n are described in ref. 7; n/Vg ¼ 101/te,
where 10 and 1 are the permittivities of free space and SiO2, respectively, and
t < 300 nm is the thickness of SiO2 on top of the Si wafer used as a substrate.
RH ¼ 1/ne is inverted to emphasize the linear dependence n / Vg. 1/RH

diverges at small n because the Hall effect changes its sign at about Vg ¼ 0,
indicating a transition between electrons and holes. Note that the transition
region (RH < 0) was often shifted from zero Vg as a result of chemical
doping7, but annealing of our devices in vacuum normally allowed us to
eliminate the shift. The extrapolation of the linear slopes j(Vg) for electrons
and holes results in their intersection at a value of j indistinguishable from
zero. d, Maximum values of resistivity r ¼ 1/j (circles) exhibited by devices
with different mobilities m (left y axis). The histogram (orange background)
shows the number P of devices exhibiting rmax within 10% intervals around
the average value of ,h/4e2. Several of the devices shown were made from
two or three layers of graphene, indicating that the quantized minimum
conductivity is a robust effect and does not require ‘ideal’ graphene.

Figure 2 |Quantumoscillations in graphene. SdHO at constant gate voltage
Vg ¼ 260Vas a function of magnetic field B (a) and at constant B ¼ 12Tas
a function of Vg (b). Because m does not change greatly with Vg, the
measurements at constant B (at a constant q ct ¼ mB) were found more
informative. In b, SdHOs in graphene are more sensitive to Tat high carrier
concentrations: blue, T ¼ 20K; green, T ¼ 80K; red, T ¼ 140K. The Djxx

curves were obtained by subtracting a smooth (nearly linear) increase in j
with increasing Vg and are shifted for clarity. SdHO periodicity DVg at
constant B is determined by the density of states at each Landau level
(aDVg ¼ fB/f0), which for the observed periodicity of,15.8 Vat B ¼ 12 T
yields a quadruple degeneracy. Arrows in a indicate integer n (for example,
n ¼ 4 corresponds to 10.9 T) as found from SdHO frequency BF < 43.5 T.
Note the absence of any significant contribution of universal conductance
fluctuations (see also Fig. 1) and weak localizationmagnetoresistance, which
are normally intrinsic for 2D materials with so high resistivity.
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where S(E) ¼ p k2 is the area in k-space of the orbits at the Fermi
energy E(k) (ref. 13). If these expressions are combined with the
experimentally found dependencesm c / n1/2 and BF ¼ (h/4e)n it is
straightforward to show that S must be proportional to E2, which
yields E / k. The data in Fig. 3 therefore unambiguously prove the
linear dispersion E ¼ !hkc * for both electrons and holes with a
common origin at E ¼ 0 (refs 11, 12). Furthermore, the above
equations also imply m c ¼ E/c *

2 ¼ (h2n/4p c *
2)1/2 and the best fit

to our data yields c * < 106 m s21, in agreement with band structure
calculations11,12. The semiclassical model employed is fully justi-
fied by a recent theory for graphene14, which shows that SdHO’s
amplitude can indeed be described by the above expression
T/sinh(2p 2kBTm c/!heB) with m c ¼ E/c *

2. Therefore, even though
the linear spectrum of fermions in graphene (Fig. 3e) implies zero
rest mass, their cyclotron mass is not zero.

The unusual response of massless fermions to a magnetic field is
highlighted further by their behaviour in the high-field limit, at
which SdHOs evolve into the quantum Hall effect (QHE). Figure 4
shows the Hall conductivity jxy of graphene plotted as a function of
electron and hole concentrations in a constant B. Pronounced QHE
plateaux are visible, but they do not occur in the expected sequence
jxy ¼ (4e2/h)N, where N is integer. On the contrary, the plateaux
correspond to half-integer n so that the first plateau occurs at 2e2/h
and the sequence is (4e2/h)(N þ 1/2). The transition from the lowest
hole (n ¼ 21/2) to the lowest electron (n ¼ þ1/2) Landau level (LL)
in graphene requires the same number of carriers (Dn ¼ 4B/
f0 < 1.2 £ 1012 cm22) as the transition between other nearest levels
(compare the distances between minima in rxx). This results in a
ladder of equidistant steps in jxy that are not interrupted when
passing through zero. To emphasize this highly unusual behaviour,
Fig. 4 also shows j xy for a graphite film consisting of only two
graphene layers, in which the sequence of plateaux returns to normal
and the first plateau is at 4e2/h, as in the conventional QHE. We
attribute this qualitative transition between graphene and its two-
layer counterpart to the fact that fermions in the latter exhibit a finite
mass near n < 0 and can no longer be described as massless Dirac
particles.
The half-integer QHE in graphene has recently been suggested by

two theory groups15,16, stimulated by our work on thin graphite films7

but unaware of the present experiment. The effect is single-particle
and is intimately related to subtle properties of massless Dirac
fermions, in particular to the existence of both electron-like and
hole-like Landau states at exactly zero energy14–17. The latter can be
viewed as a direct consequence of the Atiyah–Singer index theorem
that is important in quantum field theory and the theory of super-
strings18,19. For 2D massless Dirac fermions, the theorem guarantees
the existence of Landau states at E ¼ 0 by relating the difference in
the number of such states with opposite chiralities to the total flux
through the system (magnetic field can be inhomogeneous).

Figure 1 | Electric field effect in graphene. a, Scanning electron microscope
image of one of our experimental devices (the width of the central wire is
0.2 mm). False colours are chosen to match real colours as seen in an optical
microscope for large areas of the same material. b, c, Changes in graphene’s
conductivity j (b) and Hall coefficient RH (c) as a function of gate voltage
Vg. j and RH were measured in magnetic fields B of 0 and 2T, respectively.
The induced carrier concentrations n are described in ref. 7; n/Vg ¼ 101/te,
where 10 and 1 are the permittivities of free space and SiO2, respectively, and
t < 300 nm is the thickness of SiO2 on top of the Si wafer used as a substrate.
RH ¼ 1/ne is inverted to emphasize the linear dependence n / Vg. 1/RH

diverges at small n because the Hall effect changes its sign at about Vg ¼ 0,
indicating a transition between electrons and holes. Note that the transition
region (RH < 0) was often shifted from zero Vg as a result of chemical
doping7, but annealing of our devices in vacuum normally allowed us to
eliminate the shift. The extrapolation of the linear slopes j(Vg) for electrons
and holes results in their intersection at a value of j indistinguishable from
zero. d, Maximum values of resistivity r ¼ 1/j (circles) exhibited by devices
with different mobilities m (left y axis). The histogram (orange background)
shows the number P of devices exhibiting rmax within 10% intervals around
the average value of ,h/4e2. Several of the devices shown were made from
two or three layers of graphene, indicating that the quantized minimum
conductivity is a robust effect and does not require ‘ideal’ graphene.

Figure 2 |Quantumoscillations in graphene. SdHO at constant gate voltage
Vg ¼ 260Vas a function of magnetic field B (a) and at constant B ¼ 12Tas
a function of Vg (b). Because m does not change greatly with Vg, the
measurements at constant B (at a constant q ct ¼ mB) were found more
informative. In b, SdHOs in graphene are more sensitive to Tat high carrier
concentrations: blue, T ¼ 20K; green, T ¼ 80K; red, T ¼ 140K. The Djxx

curves were obtained by subtracting a smooth (nearly linear) increase in j
with increasing Vg and are shifted for clarity. SdHO periodicity DVg at
constant B is determined by the density of states at each Landau level
(aDVg ¼ fB/f0), which for the observed periodicity of,15.8 Vat B ¼ 12 T
yields a quadruple degeneracy. Arrows in a indicate integer n (for example,
n ¼ 4 corresponds to 10.9 T) as found from SdHO frequency BF < 43.5 T.
Note the absence of any significant contribution of universal conductance
fluctuations (see also Fig. 1) and weak localizationmagnetoresistance, which
are normally intrinsic for 2D materials with so high resistivity.
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where S(E) ¼ p k2 is the area in k-space of the orbits at the Fermi
energy E(k) (ref. 13). If these expressions are combined with the
experimentally found dependencesm c / n1/2 and BF ¼ (h/4e)n it is
straightforward to show that S must be proportional to E2, which
yields E / k. The data in Fig. 3 therefore unambiguously prove the
linear dispersion E ¼ !hkc * for both electrons and holes with a
common origin at E ¼ 0 (refs 11, 12). Furthermore, the above
equations also imply m c ¼ E/c *

2 ¼ (h2n/4p c *
2)1/2 and the best fit

to our data yields c * < 106 m s21, in agreement with band structure
calculations11,12. The semiclassical model employed is fully justi-
fied by a recent theory for graphene14, which shows that SdHO’s
amplitude can indeed be described by the above expression
T/sinh(2p 2kBTm c/!heB) with m c ¼ E/c *

2. Therefore, even though
the linear spectrum of fermions in graphene (Fig. 3e) implies zero
rest mass, their cyclotron mass is not zero.

The unusual response of massless fermions to a magnetic field is
highlighted further by their behaviour in the high-field limit, at
which SdHOs evolve into the quantum Hall effect (QHE). Figure 4
shows the Hall conductivity jxy of graphene plotted as a function of
electron and hole concentrations in a constant B. Pronounced QHE
plateaux are visible, but they do not occur in the expected sequence
jxy ¼ (4e2/h)N, where N is integer. On the contrary, the plateaux
correspond to half-integer n so that the first plateau occurs at 2e2/h
and the sequence is (4e2/h)(N þ 1/2). The transition from the lowest
hole (n ¼ 21/2) to the lowest electron (n ¼ þ1/2) Landau level (LL)
in graphene requires the same number of carriers (Dn ¼ 4B/
f0 < 1.2 £ 1012 cm22) as the transition between other nearest levels
(compare the distances between minima in rxx). This results in a
ladder of equidistant steps in jxy that are not interrupted when
passing through zero. To emphasize this highly unusual behaviour,
Fig. 4 also shows j xy for a graphite film consisting of only two
graphene layers, in which the sequence of plateaux returns to normal
and the first plateau is at 4e2/h, as in the conventional QHE. We
attribute this qualitative transition between graphene and its two-
layer counterpart to the fact that fermions in the latter exhibit a finite
mass near n < 0 and can no longer be described as massless Dirac
particles.
The half-integer QHE in graphene has recently been suggested by

two theory groups15,16, stimulated by our work on thin graphite films7

but unaware of the present experiment. The effect is single-particle
and is intimately related to subtle properties of massless Dirac
fermions, in particular to the existence of both electron-like and
hole-like Landau states at exactly zero energy14–17. The latter can be
viewed as a direct consequence of the Atiyah–Singer index theorem
that is important in quantum field theory and the theory of super-
strings18,19. For 2D massless Dirac fermions, the theorem guarantees
the existence of Landau states at E ¼ 0 by relating the difference in
the number of such states with opposite chiralities to the total flux
through the system (magnetic field can be inhomogeneous).

Figure 1 | Electric field effect in graphene. a, Scanning electron microscope
image of one of our experimental devices (the width of the central wire is
0.2 mm). False colours are chosen to match real colours as seen in an optical
microscope for large areas of the same material. b, c, Changes in graphene’s
conductivity j (b) and Hall coefficient RH (c) as a function of gate voltage
Vg. j and RH were measured in magnetic fields B of 0 and 2T, respectively.
The induced carrier concentrations n are described in ref. 7; n/Vg ¼ 101/te,
where 10 and 1 are the permittivities of free space and SiO2, respectively, and
t < 300 nm is the thickness of SiO2 on top of the Si wafer used as a substrate.
RH ¼ 1/ne is inverted to emphasize the linear dependence n / Vg. 1/RH

diverges at small n because the Hall effect changes its sign at about Vg ¼ 0,
indicating a transition between electrons and holes. Note that the transition
region (RH < 0) was often shifted from zero Vg as a result of chemical
doping7, but annealing of our devices in vacuum normally allowed us to
eliminate the shift. The extrapolation of the linear slopes j(Vg) for electrons
and holes results in their intersection at a value of j indistinguishable from
zero. d, Maximum values of resistivity r ¼ 1/j (circles) exhibited by devices
with different mobilities m (left y axis). The histogram (orange background)
shows the number P of devices exhibiting rmax within 10% intervals around
the average value of ,h/4e2. Several of the devices shown were made from
two or three layers of graphene, indicating that the quantized minimum
conductivity is a robust effect and does not require ‘ideal’ graphene.

Figure 2 |Quantumoscillations in graphene. SdHO at constant gate voltage
Vg ¼ 260Vas a function of magnetic field B (a) and at constant B ¼ 12Tas
a function of Vg (b). Because m does not change greatly with Vg, the
measurements at constant B (at a constant q ct ¼ mB) were found more
informative. In b, SdHOs in graphene are more sensitive to Tat high carrier
concentrations: blue, T ¼ 20K; green, T ¼ 80K; red, T ¼ 140K. The Djxx

curves were obtained by subtracting a smooth (nearly linear) increase in j
with increasing Vg and are shifted for clarity. SdHO periodicity DVg at
constant B is determined by the density of states at each Landau level
(aDVg ¼ fB/f0), which for the observed periodicity of,15.8 Vat B ¼ 12 T
yields a quadruple degeneracy. Arrows in a indicate integer n (for example,
n ¼ 4 corresponds to 10.9 T) as found from SdHO frequency BF < 43.5 T.
Note the absence of any significant contribution of universal conductance
fluctuations (see also Fig. 1) and weak localizationmagnetoresistance, which
are normally intrinsic for 2D materials with so high resistivity.
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where S(E) ¼ p k2 is the area in k-space of the orbits at the Fermi
energy E(k) (ref. 13). If these expressions are combined with the
experimentally found dependencesm c / n1/2 and BF ¼ (h/4e)n it is
straightforward to show that S must be proportional to E2, which
yields E / k. The data in Fig. 3 therefore unambiguously prove the
linear dispersion E ¼ !hkc * for both electrons and holes with a
common origin at E ¼ 0 (refs 11, 12). Furthermore, the above
equations also imply m c ¼ E/c *

2 ¼ (h2n/4p c *
2)1/2 and the best fit

to our data yields c * < 106 m s21, in agreement with band structure
calculations11,12. The semiclassical model employed is fully justi-
fied by a recent theory for graphene14, which shows that SdHO’s
amplitude can indeed be described by the above expression
T/sinh(2p 2kBTm c/!heB) with m c ¼ E/c *

2. Therefore, even though
the linear spectrum of fermions in graphene (Fig. 3e) implies zero
rest mass, their cyclotron mass is not zero.

The unusual response of massless fermions to a magnetic field is
highlighted further by their behaviour in the high-field limit, at
which SdHOs evolve into the quantum Hall effect (QHE). Figure 4
shows the Hall conductivity jxy of graphene plotted as a function of
electron and hole concentrations in a constant B. Pronounced QHE
plateaux are visible, but they do not occur in the expected sequence
jxy ¼ (4e2/h)N, where N is integer. On the contrary, the plateaux
correspond to half-integer n so that the first plateau occurs at 2e2/h
and the sequence is (4e2/h)(N þ 1/2). The transition from the lowest
hole (n ¼ 21/2) to the lowest electron (n ¼ þ1/2) Landau level (LL)
in graphene requires the same number of carriers (Dn ¼ 4B/
f0 < 1.2 £ 1012 cm22) as the transition between other nearest levels
(compare the distances between minima in rxx). This results in a
ladder of equidistant steps in jxy that are not interrupted when
passing through zero. To emphasize this highly unusual behaviour,
Fig. 4 also shows j xy for a graphite film consisting of only two
graphene layers, in which the sequence of plateaux returns to normal
and the first plateau is at 4e2/h, as in the conventional QHE. We
attribute this qualitative transition between graphene and its two-
layer counterpart to the fact that fermions in the latter exhibit a finite
mass near n < 0 and can no longer be described as massless Dirac
particles.
The half-integer QHE in graphene has recently been suggested by

two theory groups15,16, stimulated by our work on thin graphite films7

but unaware of the present experiment. The effect is single-particle
and is intimately related to subtle properties of massless Dirac
fermions, in particular to the existence of both electron-like and
hole-like Landau states at exactly zero energy14–17. The latter can be
viewed as a direct consequence of the Atiyah–Singer index theorem
that is important in quantum field theory and the theory of super-
strings18,19. For 2D massless Dirac fermions, the theorem guarantees
the existence of Landau states at E ¼ 0 by relating the difference in
the number of such states with opposite chiralities to the total flux
through the system (magnetic field can be inhomogeneous).

Figure 1 | Electric field effect in graphene. a, Scanning electron microscope
image of one of our experimental devices (the width of the central wire is
0.2 mm). False colours are chosen to match real colours as seen in an optical
microscope for large areas of the same material. b, c, Changes in graphene’s
conductivity j (b) and Hall coefficient RH (c) as a function of gate voltage
Vg. j and RH were measured in magnetic fields B of 0 and 2T, respectively.
The induced carrier concentrations n are described in ref. 7; n/Vg ¼ 101/te,
where 10 and 1 are the permittivities of free space and SiO2, respectively, and
t < 300 nm is the thickness of SiO2 on top of the Si wafer used as a substrate.
RH ¼ 1/ne is inverted to emphasize the linear dependence n / Vg. 1/RH

diverges at small n because the Hall effect changes its sign at about Vg ¼ 0,
indicating a transition between electrons and holes. Note that the transition
region (RH < 0) was often shifted from zero Vg as a result of chemical
doping7, but annealing of our devices in vacuum normally allowed us to
eliminate the shift. The extrapolation of the linear slopes j(Vg) for electrons
and holes results in their intersection at a value of j indistinguishable from
zero. d, Maximum values of resistivity r ¼ 1/j (circles) exhibited by devices
with different mobilities m (left y axis). The histogram (orange background)
shows the number P of devices exhibiting rmax within 10% intervals around
the average value of ,h/4e2. Several of the devices shown were made from
two or three layers of graphene, indicating that the quantized minimum
conductivity is a robust effect and does not require ‘ideal’ graphene.

Figure 2 |Quantumoscillations in graphene. SdHO at constant gate voltage
Vg ¼ 260Vas a function of magnetic field B (a) and at constant B ¼ 12Tas
a function of Vg (b). Because m does not change greatly with Vg, the
measurements at constant B (at a constant q ct ¼ mB) were found more
informative. In b, SdHOs in graphene are more sensitive to Tat high carrier
concentrations: blue, T ¼ 20K; green, T ¼ 80K; red, T ¼ 140K. The Djxx

curves were obtained by subtracting a smooth (nearly linear) increase in j
with increasing Vg and are shifted for clarity. SdHO periodicity DVg at
constant B is determined by the density of states at each Landau level
(aDVg ¼ fB/f0), which for the observed periodicity of,15.8 Vat B ¼ 12 T
yields a quadruple degeneracy. Arrows in a indicate integer n (for example,
n ¼ 4 corresponds to 10.9 T) as found from SdHO frequency BF < 43.5 T.
Note the absence of any significant contribution of universal conductance
fluctuations (see also Fig. 1) and weak localizationmagnetoresistance, which
are normally intrinsic for 2D materials with so high resistivity.
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To explain the half-integer QHE qualitatively, we invoke
the formal expression2,14–17 for the energy of massless relativistic
fermions in quantized fields, EN ¼ [2e!hc*

2B(N þ 1/2 ^ 1/2)]1/2.
In quantum electrodynamics, the sign^ describes two spins, whereas
in graphene it refers to ‘pseudospins’. The latter have nothing to do
with the real spin but are ‘built in’ to the Dirac-like spectrum of
graphene; their origin can be traced to the presence of two carbon
sublattices. The above formula shows that the lowest LL (N ¼ 0)
appears at E ¼ 0 (in agreement with the index theorem) and
accommodates fermions with only one (minus) projection of the
pseudospin. All other levels N $ 1 are occupied by fermions with
both (^) pseudospins. This implies that for N ¼ 0 the degeneracy is
half of that for any otherN. Alternatively, one can say that all LLs have
the same ‘compound’ degeneracy but the zero-energy LL is shared
equally by electrons and holes. As a result the first Hall plateau occurs
at half the normal filling and, oddly, both n ¼ 21/2 and þ1/2
correspond to the same LL (N ¼ 0). All other levels have normal
degeneracy 4B/f0 and therefore remain shifted by the same 1/2 from
the standard sequence. This explains the QHE at n ¼ N þ 1/2 and, at
the same time, the ‘odd’ phase of SdHO (minima in rxx correspond to
plateaux in rxy and therefore occur at half-integer n; see Figs 2 and 4),
in agreement with theory14–17. Note, however, that from another
perspective the phase shift can be viewed as the direct manifestation
of Berry’s phase acquired by Dirac fermions moving in magnetic
field20,21.
Finally, we return to zero-field behaviour and discuss another

feature related to graphene’s relativistic-like spectrum. The spectrum
implies vanishing concentrations of both carriers near the Dirac
point E ¼ 0 (Fig. 3e), which suggests that low-T resistivity of the

zero-gap semiconductor should diverge at Vg < 0. However, neither
of our devices showed such behaviour. On the contrary, in the
transition region between holes and electrons graphene’s conduc-
tivity never falls below a well-defined value, practically independent
of Tbetween 4K and 100 K. Figure 1c plots values of the maximum
resistivity rmax found in 15 different devices at zero B, which
within an experimental error of ,15% all exhibit rmax < 6.5 kQ
independently of their mobility, which varies by a factor of 10. Given
the quadruple degeneracy f, it is obvious to associate rmax with
h/fe2 ¼ 6.45 kQ, where h/e2 is the resistance quantum.We emphasize
that it is the resistivity (or conductivity) rather than the resistance (or
conductance) that is quantized in graphene (that is, resistance R
measured experimentally scaled in the usual manner as R¼ rL/w
with changing length L andwidthw of our devices). Thus, the effect is
completely different from the conductance quantization observed
previously in quantum transport experiments.
However surprising it may be, the minimum conductivity is an

intrinsic property of electronic systems described by the Dirac
equation22–25. It is due to the fact that, in the presence of disorder,
localization effects in such systems are strongly suppressed and
emerge only at exponentially large length scales. Assuming the
absence of localization, the observed minimum conductivity can be
explained qualitatively by invoking Mott’s argument26 that the mean
free path l of charge carriers in ametal can never be shorter than their
wavelength lF. Then, j ¼ nem can be rewritten as j ¼ (e2/h)kFl, so j
cannot be smaller than,e2/h for each type of carrier. This argument
is known to have failed for 2D systems with a parabolic spectrum in
which disorder leads to localization and eventually to insulating
behaviour22,23. For 2DDirac fermions, no localization is expected22–25

and, accordingly, Mott’s argument can be used. Although there is a
broad theoretical consensus15,16,23–28 that a 2D gas of Dirac fermions
should exhibit a minimum conductivity of about e2/h, this quantiza-
tion was not expected to be accurate and most theories suggest a
value of ,e2/p h, in disagreement with the experiment.
Thus, graphene exhibits electronic properties that are distinctive

for a 2D gas of particles described by the Dirac equation rather than
the Schrödinger equation. The work shows a possibility of studying

Figure 4 | QHE for massless Dirac fermions. Hall conductivity jxy and
longitudinal resistivity rxx of graphene as a function of their concentration
at B ¼ 14 T and T¼ 4K. jxy ; (4e2/h)n is calculated from the measured
dependences of rxy(Vg) and rxx(Vg) as jxy ¼ rxy/(rxy

2 þ rxx
2 ). The

behaviour of 1/rxy is similar but exhibits a discontinuity at Vg < 0, which is
avoided by plotting jxy. Inset: jxy in ‘two-layer graphene’ where the
quantization sequence is normal and occurs at integer n. The latter shows
that the half-integer QHE is exclusive to ‘ideal’ graphene.

Figure 3 | Dirac fermions of graphene. a, Dependence of BF on carrier
concentration n (positive n corresponds to electrons; negative to holes).
b, Examples of fan diagrams used in our analysis7 to findBF.N is the number
associated with different minima of oscillations. The lower and upper curves
are for graphene (sample of Fig. 2a) and a 5-nm-thick film of graphite with a
similar value of BF, respectively. Note that the curves extrapolate to different
origins, namely to N ¼ 1/2 and N ¼ 0. In graphene, curves for all n
extrapolate toN ¼ 1/2 (compare ref. 7). This indicates a phase shift of p with
respect to the conventional Landau quantization in metals. The shift is due
to Berry’s phase14,20. c, Examples of the behaviour of SdHO amplitude Dj
(symbols) as a function of T for m c < 0.069 and 0.023m0 (see the
dependences showing the rapid and slower decay with increasing T,
respectively); solid curves are best fits.d, Cyclotronmassm c of electrons and
holes as a function of their concentration. Symbols are experimental data,
solid curves the best fit to theory. e, Electronic spectrum of graphene, as
inferred experimentally and in agreement with theory. This is the spectrum
of a zero-gap 2D semiconductor that describes massless Dirac fermions with
c* 1/300 the speed of light.
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Graphene. Into the quantum Hall regime

Half-integer quantum Hall effect. Filling predicted for massless Dirac fermions

K.S. Novoselov et al., Nature 438, 197 (2005) [also Y. Zhang et al., Nature 438, 201 (2005)]
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tivity never falls below a well-defined value, practically independent
of Tbetween 4K and 100 K. Figure 1c plots values of the maximum
resistivity rmax found in 15 different devices at zero B, which
within an experimental error of ,15% all exhibit rmax < 6.5 kQ
independently of their mobility, which varies by a factor of 10. Given
the quadruple degeneracy f, it is obvious to associate rmax with
h/fe2 ¼ 6.45 kQ, where h/e2 is the resistance quantum.We emphasize
that it is the resistivity (or conductivity) rather than the resistance (or
conductance) that is quantized in graphene (that is, resistance R
measured experimentally scaled in the usual manner as R¼ rL/w
with changing length L andwidthw of our devices). Thus, the effect is
completely different from the conductance quantization observed
previously in quantum transport experiments.
However surprising it may be, the minimum conductivity is an

intrinsic property of electronic systems described by the Dirac
equation22–25. It is due to the fact that, in the presence of disorder,
localization effects in such systems are strongly suppressed and
emerge only at exponentially large length scales. Assuming the
absence of localization, the observed minimum conductivity can be
explained qualitatively by invoking Mott’s argument26 that the mean
free path l of charge carriers in ametal can never be shorter than their
wavelength lF. Then, j ¼ nem can be rewritten as j ¼ (e2/h)kFl, so j
cannot be smaller than,e2/h for each type of carrier. This argument
is known to have failed for 2D systems with a parabolic spectrum in
which disorder leads to localization and eventually to insulating
behaviour22,23. For 2DDirac fermions, no localization is expected22–25

and, accordingly, Mott’s argument can be used. Although there is a
broad theoretical consensus15,16,23–28 that a 2D gas of Dirac fermions
should exhibit a minimum conductivity of about e2/h, this quantiza-
tion was not expected to be accurate and most theories suggest a
value of ,e2/p h, in disagreement with the experiment.
Thus, graphene exhibits electronic properties that are distinctive

for a 2D gas of particles described by the Dirac equation rather than
the Schrödinger equation. The work shows a possibility of studying

Figure 4 | QHE for massless Dirac fermions. Hall conductivity jxy and
longitudinal resistivity rxx of graphene as a function of their concentration
at B ¼ 14 T and T¼ 4K. jxy ; (4e2/h)n is calculated from the measured
dependences of rxy(Vg) and rxx(Vg) as jxy ¼ rxy/(rxy

2 þ rxx
2 ). The

behaviour of 1/rxy is similar but exhibits a discontinuity at Vg < 0, which is
avoided by plotting jxy. Inset: jxy in ‘two-layer graphene’ where the
quantization sequence is normal and occurs at integer n. The latter shows
that the half-integer QHE is exclusive to ‘ideal’ graphene.

Figure 3 | Dirac fermions of graphene. a, Dependence of BF on carrier
concentration n (positive n corresponds to electrons; negative to holes).
b, Examples of fan diagrams used in our analysis7 to findBF.N is the number
associated with different minima of oscillations. The lower and upper curves
are for graphene (sample of Fig. 2a) and a 5-nm-thick film of graphite with a
similar value of BF, respectively. Note that the curves extrapolate to different
origins, namely to N ¼ 1/2 and N ¼ 0. In graphene, curves for all n
extrapolate toN ¼ 1/2 (compare ref. 7). This indicates a phase shift of p with
respect to the conventional Landau quantization in metals. The shift is due
to Berry’s phase14,20. c, Examples of the behaviour of SdHO amplitude Dj
(symbols) as a function of T for m c < 0.069 and 0.023m0 (see the
dependences showing the rapid and slower decay with increasing T,
respectively); solid curves are best fits.d, Cyclotronmassm c of electrons and
holes as a function of their concentration. Symbols are experimental data,
solid curves the best fit to theory. e, Electronic spectrum of graphene, as
inferred experimentally and in agreement with theory. This is the spectrum
of a zero-gap 2D semiconductor that describes massless Dirac fermions with
c* 1/300 the speed of light.
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Graphene. Into the quantum Hall regime

Half-integer quantum Hall effect coming from hole-electron symmetry

K.S. Novoselov et al., Nature 438, 197 (2005) [also Y. Zhang et al., Nature 438, 201 (2005)]
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Figure 1.2: Electronic band structure of graphene, obtained using a tight-binding approxi-
mation for nearest neighbor hopping only. For small values of wavevector ⌘k around the K
and K’ points, the energy E is linear in ⌘k.

(⌘p⌅ ⌘p + e ⌘A), resulting in

�vF (⌘p + e ⌘A) · �⇥(⌘r) = E⇥(⌘r) (1.9)

where vF is the Fermi velocity (vF ⇤ 106 m2), � are the Pauli matrices and ⇥(⌘r) is a two

component wavefuntion. Working in the Landau gauge ( ⌘A = �By�x), the first component

of the wavefunction ⇥1 can be eliminated to give

v2
F (p2 � 2eBypx � e2B2y2 � ~eB)⇥2(⌘r) = E2⇥2(⌘r). (1.10)

This equation can be solved to find the eigen-energies of the Landau levels (LL)

En =
⇥

2e~v2
F |n|B (1.11)

for |n|=0,1,2.... Equation 1.11 can be compared to the dispersion obtained for conventional

2D materials [6], where En = ~⇤c(n + 1/2). The first di�erence is that in Eq. 1.11, there is

a LL at zero energy (for |n| = 0), where in conventional 2D case, the LL energy is always

� ~⇤c/2. This zero-energy LL is comprised on equal parts of electron and holes (see Fig.
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Figure 1.3: Landau levels in graphene (left) and in conventional 2D materials (right). The
two main di�erences are the presence of a zero-energy Landau level and the

�
n spacing of

the levels in graphene.

1.3), a demand of particle-hole symmetry in graphene. As carriers in the zero-energy LL

approach the edge of the sample, the energy of the electron-like excitations is increased while

the energy for the hole-like excitations decreases. This “splitting” of the zero-energy LL

results in the first edge state above E=0 to have half the degeneracy of the of the remaining

LL, giving rise to the “half-integer” quantum Hall e�ect observed experimentally [9, 10] and

predicted theorectically [11, 12]. The quantized transverse conductivity values occur at

�xy = 4(n + 1/2) e2/h = 2, 6, 10....e2/h (1.12)

di�erent from conventional 2D materials [6] and from 2 layers of graphene [13]. Consequen-

tially, this unique conductance quantization provides a useful method for distinguishing

one graphene layer from two. The second important di�erence between conventional 2D

materials is that in Eq. 1.11 the energy levels are spaced as
�

n, resulting in relatively more

closely-spaced LL at higher energies in graphene. These two di�erences are summarized in

Fig. 1.3.

1.4 Potential barriers in graphene

In the last section, the di�erence between graphene and other 2D materials was demon-

strated at large magnetic fields. In addition, the linear energy dispersion in graphene results
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Partial summary

The electronic properties of graphene are truly novel

Electronic measurements reflect the electronic structure and the DOS

Outstanding mobility for a 2D (exposed!) layer

Quantum Hall effect gives us an insight into deeper physics
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Graphene (artificial) multi-structures

Graphene layers can be sequentially stacked and rotated

New research field called “van der Waals heterostructures”

NanoLito Jaca 2018 l.hueso@nanogune.eu



19/07/2018 41

Graphene (artificial) multi-structures

Hexagonal-BN as an insulating equivalent of graphene 
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Graphene (artificial) multi-structures

Graphene and h-BN layers can be sequentially stacked

C. R. Dean et al. , Nature, 497, 598 (2013)
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Graphene (artificial) multi-structures

P. J. Zomer et al., Appl. Phys. Lett. 99, 1643 (2011)

Graphene and h-BN layers can be sequentially stacked
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Graphene (artificial) multi-structures

C. R. Dean et al. , Nature, 497, 598 (2013)

Electronic properties are greatly enhanced in comparison with SiO2 substrates

Mobility reaching 100,000 cm2/V.s in some cases. Limited by phonons (not defects)

NanoLito Jaca 2018 l.hueso@nanogune.eu
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Graphene bilayers

Graphene layers can be sequentially stacked and rotated

PMende [You Tube]
NanoLito Jaca 2018 l.hueso@nanogune.eu
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Graphene bilayers

Graphene layers can be sequentially stacked and rotated

P. Jarillo’s group (MIT)

The Moire’s pattern depend on the angle between the layers
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Graphene bilayers

Magic-angle bilayer graphene samples show superconductivity

Y. Cao, P. Jarillo et al, Nature 556, 43-50 (2018).
NanoLito Jaca 2018 l.hueso@nanogune.eu
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Graphene bilayers

Transport properties can be modulated with doping (by gating) on a single sample

Y. Cao, P. Jarillo et al, Nature 556, 43-50 (2018).
NanoLito Jaca 2018 l.hueso@nanogune.eu
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Partial summary

Fabrication of van der Waals heterostructures is possible (more on this later)

The electronic properties of graphene can be tuned by changing the substrate

Bilayer graphene offers new exciting possibilities

SC in bilayer graphene one of the most important recent results in CMP

Many other effects not discussed here

NanoLito Jaca 2018 l.hueso@nanogune.eu
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Graphene nanoribbons

Trying to turn graphene into a real semiconductor by confinement

M. Han et al., Phys. Rev. Lett. 98, 206805 (2007) [also X. Wang et al. , Phys. Rev. Lett. 100, 206803 (2008)]

Wide (> 1µm) Graphene 
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Graphene nanoribbons

Trying to turn graphene into a real semiconductor by confinement

M. Han et al., Phys. Rev. Lett. 98, 206805 (2007) [also X. Wang et al. , Phys. Rev. Lett. 100, 206803 (2008)]
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Graphene in ultra-fast electronics

Profiting from graphene high mobility for GHz electronic devices

M. Han et al., Phys. Rev. Lett. 98, 206805 (2007) [also X. Wang et al. , Phys. Rev. Lett. 100, 206803 (2008)]

Fabrication with SiC graphene and top gate geometry
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Graphene in ultra-fast electronics

Profiting from graphene high mobility for GHz electronic devices

M. Han et al., Phys. Rev. Lett. 98, 206805 (2007) [also X. Wang et al. , Phys. Rev. Lett. 100, 206803 (2008)]

Fabrication with SiC graphene and top gate geometry
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100-GHz Transistors from
Wafer-Scale Epitaxial Graphene
Y.-M. Lin,* C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu,
A. Grill, Ph. Avouris*

Graphene is the thinnest electronic mate-
rial, merely one atom thick, with very
high carrier mobilities, and therefore it

should enable transistors operating at very high
frequencies (1–3). Here, we present field-effect
transistors (FETs) fabricated on a 2-inch graphene
wafer (Fig. 1A) with a cutoff frequency in the
radio frequency range, as high as 100 GHz.

Graphene (one to two layers) was epitaxially
formed on the Si face of a semi-insulating, high-
purity SiC wafer by thermal annealing at 1450°C
(4) and exhibited an electron carrier density of
~3 × 1012 cm−2 and a Hall-effect mobility be-
tween 1000 to 1500 cm2 V–1⋅s–1. In order to form
the top gate stack, an interfacial polymer layer
made of a derivative of poly-hydroxystyrene was
spin-coated on the graphene before atomic layer
deposition of a 10-nm-thick HfO2 insulating layer
(5). These gate dielectric deposition steps main-

tained the Hall-effect carrier mobility, between
900 to 1520 cm2 V–1⋅s–1, for devices fabricated
across the 2-inch wafer.

Arrays of top-gated FETs were fabricated
with various gate lengths, LG, the shortest being
240 nm. The drain current, ID, of graphene
FETs measured as a function of gate voltage, VG
(Fig. 1B), exhibited n -type characteristics. For
all of our graphene FETs, the Dirac point (the cur-
rent minimum) always occurred at VG < –3.5 V.
This value corresponds to a rather high electron
density (>4 × 1012 cm−2) in the graphene chan-
nel at a zero gate bias state and is advantageous
for achieving low series resistance of graphene
FETs. As a result, the device transconductance,
g m, defined by dID/dVG, is nearly constant over
a wide VG range in the on state (right axis in
Fig. 1B). The output characteristics (Fig. 1C)
differ from those of conventional Si FETs be-

cause of the absence of a band gap in graphene.
No clear current saturation was observed at drain
biases up to 2 Vor before device breakdown, so
the device transconductance increases with drain
voltage for these graphene FETs.

The scattering (S) parameters of these tran-
sistors were measured to investigate their high-
frequency response. The short-circuit current
gain |h21| (the ratio of small-signal drain and
gate currents) was derived from measured S pa-
rameters and displays the 1/f frequency depen-
dence expected for an ideal FET (Fig. 1D).
The cutoff frequency fT is the frequency at which
the current gain |h21| becomes unity and signifies
the highest frequency at which signals are propa-
gated. For a gate length of 240 nm, fT as high as
100 GHz was measured at a drain bias of 2.5 V.

This 100-GHz cutoff frequency exceeds those
of graphene FETs previously reported (1–3, 5)
as well as those of Si metal-oxide semiconduc-
tor FETs of the same gate length (~40 GHz at
240 nm) (6). In addition to the current gain, the
graphene FETs also possess power gain, GMAG,
up to fMAX ~ 14 GHz and 10 GHz for 550-nm
and 240-nm gate lengths (7), respectively. Both
fT and fMAX are important figures of merit of
transistor performance. fT reflects the intrinsic
behavior of a transistor channel, whereas fMAX

also strongly depends on other factors such as
the device layout and can be further enhanced,
for example, by optimizing the gate contact
leads.

The graphene FETs, made by using wafer-
scale graphene synthesis and fabrication processes,
demonstrate the high potential of graphene for
electronics applications.
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Fig. 1. (A) Image of devices fabricated on a 2-inch graphene wafer and schematic cross-sectional view
of a top-gated graphene FET. (B) The drain current, ID, of a graphene FET (gate length LG = 240 nm) as
a function of gate voltage at drain bias of 1 V with the source electrode grounded. The device
transconductance, gm, is shown on the right axis. (C) The drain current as a function of VD of a graphene
FET (LG = 240 nm) for various gate voltages. (D) Measured small-signal current gain |h21| as a function
of frequency f for a 240-nm-gate (◇) and a 550-nm-gate (△) graphene FET at VD = 2.5 V. Cutoff
frequencies, fT, were 53 and 100 GHz for the 550-nm and 240-nm devices, respectively.
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Partial summary

Graphene covers much more ground than just pure simple digital electronics

It has great properties but serious drawbacks of complex solution

The lack of band gap can be critical for the future expansion of applications

Niche sectors such as spintronics or transparent electrodes are promising
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Beyond graphene

We have seen graphene has several drawback (notably the absence of bandgap)

Research on graphene has stimulated work on 2D materials as a class on its own 

New (and revisited) materials are creating a new field of research

Many materials (we have seen h-BN). We will focus mostly in a particular family
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Transition-metal dichalcogenides

Compounds with general formula: AX2 (A: transition metal; X: chalcogen)
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Transition-metal dichalcogenides

Compounds with general formula: AX2 (A: transition metal; X: chalcogen)

The most common (is a mineral) is MoS2

Layered material with different polytypes
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MoS2 as a transition-metal dichalcogenide

Q.H Wang et al., Nature Nano. 7, 699 (2012) 
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MoS2 as a transition-metal dichalcogenide

Q.H Wang et al., Nature Nano. 7, 699 (2012) 

Band structure changes with dimensionality. Great tuning parameter
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Electronics with MoS2

B. Radisavljevic et al., Nature Nano. 6, 147 (2011) 

MoS2 being a true semiconductors produces true field-effect digital devices
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Partial summary

New 2D materials beyond graphene

Transition-metal dichalcogenides are among the most prominent

MoS2 is a true semiconductor

Nice electronic and optical properties revealed

Very large family, as we will see now
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Comparison of band-gap of 2D materials

31 
 

Figure 1. Crystal structure of post-graphene 2D materials (top and side views). (a) Trigonal prismatic 

crystal structure of 1H TMDCs such as MoS2 and WS2. (b) Octahederal crystal structure of 1T TMDCs 

such as WTe2 and PTMCs such as SnS2. (c) Distorted octahedral crystal structure in 1T’ form of TMDCs 

such as ReS2 and SiS2. (d) Crystal structure of III-VI monochalcogenides such as InSe and GaS. (e) Crystal 

structure of monolayer Bi2Se3. (f) Crystal structure of monolayer MoO3. (g) Crystal structure of one of the 

phases of monolayer borophene grown on Ag (111). (h) Puckered anisotropic crystal structure of monolayer 

black phosphorus (BP).  

 

 

Figure 2. Electronic band parameters of selected 2D materials. Position of conduction band (CB) 

minima and valence band (VB) maxima for selected 2D monolayers and conventional semiconductors with 

respect to vacuum. The work function is provided for metals and semimetals. Materials are classified by 

color as: 2D metals (index 1,2, black); 2D semi-metals (3,4, orange), hBN (5, brown); BP (6, green); 1H 

TMDCs (7-21, blue); PTMCs (22-29, cyan); inorganic semiconductors (30-34, magenta); organic 

semiconductors (35-37, yellow); semiconducting single-walled carbon nanotubes (s-SWCNTs) (38, dark 

yellow); PbS quantum dots (39, dark blue). The red lines on the right axis show the work functions of 

common metal contacts. Information in parentheses: D = direct band gap; I = indirect band gap, p(n) = 

predominantly hole (electron) conduction; p/n = both electron and hole conduction or ambipolar 

V. Sanwan and M. Hersam, unpublished 
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Transition-metal dichalcogenides
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2D van der Waals heterostructure devices

Artificial purpose-designed materials by vdW epitaxy 

Brief recap regarding the fabrication (similar to graphene/h-BN seen before)
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2D van der Waals heterostructure devices

K.S. Novoselov et al., Science 353, 461 (2016) 

Wet technique schematized
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2D van der Waals heterostructure devices

S.J. Haigh et al., Nature Mater.  11, 764 (2012) 

Cross-section of extraordinary homogeneity

Examples in this case with graphene/h-BN (easier to observe differences and patterns)
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2D to MoS2 electrical contacts

X. Cui et al., Nature Nano. 10, 534 (2015) 

Fully engineered MoS2 device for reaching ultimate electronic properties
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2D to MoS2 electrical contacts

X. Cui et al., Nature Nano. 10, 534 (2015) 

Fully engineered MoS2 device for reaching ultimate electronic properties
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Final summary

New materials for new electronic devices

2D materials are an interesting playground for physics, but also engineering

Multiple device applications in electronic and opto-electronics
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THE END
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