

Institut Català de Nanociència i Nanotecnologia

Optical Metrology in Nanofabrication

Dr. Guy Whitworth guy.whitworth@icn2.cat

Generalitat

Catalunva

Patrons:

Prof. Clivia Sotomayor-Torres Dr Nikolaos Kehagias

Universitat Autònoma de Barcelona

Member of:

Barcelona Institute of Science and Technology

Why Metrology?

Logic Transistor Density

International Roadmap for Devices and Systems, Metrology (2017)

Overview

- \circ Overview of Metrology
- Metrology in Nanofabrication
- Optical Scatterometry
- Inverse Problem Solving
- Case Study : Diffractometry for roll-to-roll microstructured films

Overview

Overview of Metrology

• Metrology in Nanofabrication

Optical Scatterometry

Inverse Problem Solving

 Case Study : Diffractometry for roll-to-roll microstructured films

Metrology Introduction

"When you can measure what you are speaking about and express it in numbers you know something about it; but when you can not express it in numbers your knowledge is of a meagre and unsatisfactory kind" – Lord Kelvin (1824 – 1907)

Measuring by the Body – The Cubit

Measuring by the Body – The Cubit

The Polar Quadrant Survey

Belfry of Dunkirk

Mètre des Archives

Krypton Lamp

Q: How many 605 nm wavelengths are in a metre? A: 1 650 763.73

Iodine-stabalised He-Ne Laser

1 m =

~ 3.33 ns

What has been the most importnat invention?

Eric Betzig

The Nobel Prize in Chemistry 2014 Eric Betzig, Stefan W. Hell, William E. Moerner

Brief History of Optics

Modern Microscopy

Virus ~ 100 nm Proteins ~ 10 nm

Modern Transistors ~ 20 nm

Diffraction Limit

Airy Disk

 $r=\frac{0.61\,\lambda}{NA}\approx\frac{\lambda}{2}$

Scanning Electron Microscope (SEM)

Bio Hydrophobic Surfaces

Lotus Leaf

Rose Petal

Perovskite DFB Lasers

21

Overview

Overview of Metrology

- Metrology in Nanofabrication
- Optical Scatterometry
- Inverse Problem Solving
- Case Study : Diffractometry for roll-to-roll microstructured films

High Throughput Roll-to-Roll Printing

Nanofabrication technologies for Roll-to-Roll Processing, NIST-NNN Workshop, 2011

EXCELENCIA SEVERO OCHOA

••• CN29

What to Measurere?

6

θ

- (1) Film thickness
- (2) Height
- (3) Period
- (4) Width
- (5) Sidewall Roughness
- (6) Sidewall Angle
- (7) Morphology
- (8) Defects

7

Wish List of Metrology

"Metrology reamins a key potential limitation for R2R nanomanufacuring due to strignet requirements of monitoring features at extremley high rates."

- Fast, convenient, non-destructive
- Resolution < 10 nm

und

ann

Lateral dimensión and height of the 3-D structure
Suitable for in-line or in-situ operation

Nanofabrication technologies for Roll-to-Roll Processing, NIST-NNN Workshop, 2011

Standard Microscopy Limitations

Optical Microscopy

SEM

•

- Requires Vacuum
- Sensitive Alignment
- Speed/resolution Trade-off

Super Resolution: Flourescence

STED : Stiumulated Emission Depletion Microscopy

Super Resolution: Flourescence

STED : Stiumulated Emission Depletion Microscopy

STED Resolution = 50 nm

Confocal Resolution = 200 nm

The Nobel Prize in Chemistry 2014 Eric Betzig, Stefan W. Hell, William E. Moerner

Microsphere-assisted Microscopy

Kassamakov et al, Scientific Reports 7, 3683 (2017)

Microsphere-assisted Microscopy

3D Super-Resolution Optical Profiling Using Microsphere Enhanced Mirau Interferometry

Kassamakov et al, Scientific Reports 7, 3683 (2017)

Overview

Overview of Metrology

• Metrology in Nanofabrication

Optical Scatterometry

Inverse Problem Solving

 Case Study : Diffractometry for roll-to-roll microstructured films

Scatterometry Schematic

Scatterometry Schematic

Scatterometry of a Periodic Structure

Reflectometry: Angle Dependance

Reflectometry: Angle Example

0.5

0

R. M. Al-Assaad et al, J. Vac. Sci. Tech. B. 25, 6, 2007

Reflectometry: Wavelength Dependance

Reflectometry: Wavelength Example

In-line characterization of nanostructured mass-produced polymer components using scatterometry

J. S. Madsen et al, J. Micromech. Microeng. 27, 2396 (2017)

Fourier Scatterometry

Real Plane Imaging

Fourier Scatterometry

Fourier Plane Imaging

Fourier Scatterometry

Solving the inverse grating problem by white light interference Fourier scatterometry

V. F. Paz et al, Light: Science & Applications volume 1, page e36 (2012)

Ellipsometry

Measures the polarisation amplitude ratio and the dephasing of reflected light

- Complex refractive index $\tilde{n} = n + i\kappa$
- Anisotropy
- Thicknesses of films or stacks of films (nms)
- (Grating Stucture)

https://www.jawoollam.com/resources/ellipsometry-tutorial

Diffractometry

Overview

Overview of Metrology

• Metrology in Nanofabrication

Optical Scatterometry

Inverse Problem Solving

 Case Study : Diffractometry for roll-to-roll microstructured films

Inverse Problem Solving

51

Electromagnetic Simulations

Solving Maxwell's Equations in 1D, 2D & 3D Computationally

https://www.comsol.com/

Finite-Difference Frequency/Time Domain

FDFD/FDTD

- Solves Maxells equations using finite-difference approximation
- Finite structures
- Can handle diffraction effects $\Lambda > \lambda$

Semi-limited to 2D structures

Rigourous Coupled-Wave Analysis

- Anaylitical Method
- 1D Dielectric Stacks

Rigourous Coupled-Wave Analysis (RCWA)

- Semi-Anaylitical Method
- 3D Structures
- Assumes Periodicity

RCWA: Methodology

http://emlab.utep.edu/academics.htm FDTD & CE

58

Overview

Overview of Metrology

• Metrology in Nanofabrication

Optical Scatterometry

Inverse Problem Solving

 Case Study : Diffractometry for roll-to-roll microstructured films

Case Study: Diffractometry @ ICN2

FLEXPOL: Antimicrobial FLEXible POLymers for its use in hospital environments

https://www.flexpol.eu/

Hypothesis

M. Kreuzer et al, APL Materials, 6, 058502 (2018)

Initial Testing – Line Width Detection

Test Sample

- 80 mm long stripe with 4 distinct regions
- Periodicity 6 µm
- Each region varies line-width (320 470 nm)
- Silicon Master replicated in PDMS

64

80 mm

FDFD and The Diffraction Pattern

Device Structure

E_z Solution o the FDFD

M. Kreuzer et al, APL Materials, 6, 058502 (2018)

FDFD and The Diffraction Pattern

M. Kreuzer et al, APL Materials, 6, 058502 (2018)

Far-Field Projection

Near-to-Far-Field Transformation, Chapter 14, John Schneider Lecture Notes

67

Calibrating for Line-Width

Silicon

 $h = 115 \pm 10 nm$ $\vartheta_{incident} = 13 \pm 1^{\circ}$ $RC = 50 \pm 15 nm$

PDMS

 $h = 120 \pm 5 nm$ $\vartheta_{incident} = 11 \pm 1^{\circ}$ $RC = 40 \pm 15 nm$

OFFLINE MEASURMENT

M. Kreuzer et al, APL Materials, 6, 058502 (2018)

Roll-to-Roll Line Width Sensing

M. Kreuzer et al, APL Materials, 6, 058502 (2018)

Diffractometry: System Update

FDFD: Update Methodology

Modelling finite, more realistic areas leads to smooth far-field diffraction patterns

Defect Detection

Defect Gratings

- Varying amounts of missing lines (100-70%)
- 5 µm pitch
- ~ 300 nm height
- ~ 200 nm width

Live Diffractometry

Diffractometry

Height = 330 ± 5 nm, Width= 95 ± 5 nm, Slope = $78 \pm 2^{\circ}$

Height = 315 ± 5 nm, Width= 90 ± 10 nm, Slope = $72 \pm 6^{\circ}$

Ormocomp AFM Comparison

- Comparison shows reasonable agreement with AFM limitations
- Comparison with a FIB cross-section required

75

Conclusions

Overview of Metrology

- Metrology in Nanofabrication
- ✓ Optical Scatterometry
- ✓ Inverse Problem Solving
- Case Study : Diffractometry for roll-to-roll microstructured films

Future of Diffractometry

- Potential for high-throughput fast dimensional metrolgoy
- Nanoscale accuracy but limited to microscale periodicity
- o Improvements required on traceability
- Move to 2D structures
- Possibility for other metrology for microscale phenomena (hydrophobicity, microlens)

Roll-to-Roll Line Width Sensing

M. Kreuzer et al, APL Materials, 6, 058502 (2018)

Example : Organic DFB Lasers

- Completely Solution Processable
- Wavelength Tuneable Laser
- Easy to Upscale?

 $\Lambda \propto \lambda_{laser}$

