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Traditional Nanofabrication

)

0 00 0000 OO0 O
O 00 00 0 0 0 00
0: 0.0, 0 0..0°0.0:0:..0
0O 000000000
© 0 0 00 0 0 00 00
09 0 0000 0 0 00
0 0 0 0 0 0 0 0 0 0 9

[4]

<

0

.WN%.V
o5

Yol So
off Sl =
):‘70a

VI Ve

S c
£
]
2 @ i ~
o v < S
o S + |
v > o g
- o — Qo
C ¢go, 2 &
S = v o \0
O
[ (%)
— 522 ¢ m.m
=) - ©a O s X
© 2gg & 5 3
c © S T
v Vv S & O
dd nHh c= 2 &=
* o= _ un QO = B
>= g v S
mhbae S
hV (0] | - 1
© <= Au © ®)
o =mm— — ) c pw —1 <
Woea < T M
— = — O
com 2 5§ _ z
wE3c =2 8 ¢
_ eor.ww = 3 2
)
53 27 £ 3
= = © S _
" @© 0 = Q
v o 2 20 S
O 855 2% =
O o & I c /W
- =
S
ﬂﬂu o ° MU
RS
S
[V

D

[

0 000000 OO0

S0
9 )

"R N8

P Na? Yo

;atan\m =,
S

plasmonic transmutation

highly exposed areas

@b
°
o b
o
° D
°
(-3
o
°
op
°
©p
o
o
b
°
o
o
o
°

[6]

W
)
o
L.
S
o)
S
S
S
IS
£
]
N
o

200\
O

J

b A\
RO

[5] Jin et-al, Front. Optoelec. 2013, 6, 3

[3] Copyright Joachim Krenn, Institute of Physics, University of Graz

[4] Copyright University of Sheffield

[1] Copyright Cambridge University

[6] Wen et-al, Nano Letters 2012, 12, 5020

[2] Kim et-al, SPIE Newsroom. DOI: 10.1117/2.1200812.1396



Traditional Nanofabrication
and its Limitations

*  Classical lithography is not only very powerful
but also well established and widely used in
fundamental and applied physics

deposition /
removal /
modification

lithography
removal

(nano-)

lithography

*  However, there are situations where they can
not be applied!

v light fiber nano-modification Y . .
subtractive (top-down) additive (bottom-up) IDEAL Situation
* No additional layer prior to fabrication

*  No masks during lithography

* No elevated temperatures during processing
* Noreactive gases and / or liquids

*  Minimally invasive process conditions

* 3D capabilities

* Variable materials capabilities

* Complex shapes apart from reqular structures

* Nanoscale capabilities
[6]
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Mask-less Direct-Write Fabrication
via
Focused Particle Beams
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... why Electrons? Focused

Electron / lon
Beam Gas Injection Nozzle

lon beams can also do bottom-up fabrication ...
however, with a few drawbacks: Volatile

«  Material implantation, heat generation, and ~ Products Pre'GCa‘;rsor
more complicated setups due to concurrent .
sputtering / deposition processes L e * “
et M e & >
«- > 9 Injection
(2

Electron beams, on the other hand, provide:
* No unwanted sputtering
* Minimal temperature rise Deposits  Dissociation Physisorption

* No unwanted material implantation in the & Deposition & Diffusion
substrate and the deposit

e  Variable functionalities

*  Mask-less, direct-write 1D — 3D nano-
fabrication on practically any given surface!

TEM X-section [1]

surface disruption due
to sub-surface bubbling

high thermal stress

200 '/m
—

sub-surface

[1] Fox et-al, Beilstein J. Nanotechnol. 2012, 3, 579.
[2] Schmied et-al, RSC Advances 2012, 2, 6932.
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Setup for Focused Electron Beam Induced Deposition

 Mostly, FEBID is performed in electron / ion
6 dual beam microscopes (DBM)

« What is needed:
1. A DBM or a classical SEM

2. Gas injection system (commercially
integrated or expanded, home-built)

3. Patterning generator (built-in or external
hardware; e.g. RAITH)

4. The precursor of interest

5. ©...some experience ... ©

Injection oo
Systems Electron Column

T

i
1

ity |

. . add-on patterning generator
FELMI-ZFE scanning electron microscope
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Fundamentals
FIRST




From Theory to Reality

9 A nano-sized, focused electron beam locally dissociates the precursor into non-volatile (functional)
and volatile fragments (which are pumped away)

Dissociation
Cross Section

Sticking

Precursor
Type

Residence

Dwell Times

Precursor
Primary =MPE :
Electron

Point Pitches

Working Regime

Patterning

Patterning

Gas Injection
System

i ... in reality we have more than 20 variables which mostly depend on each other ...

Substrate

Patterning
Array

FELMI-ZFE



Overview

10 _
Electrons in
Motion
" How Small
. Can we Get
}
Lets Build a Cube )= o
v
What's Inside }
v
Lets Make It Pure
I
v
g [ ...and now in 3D ... }

FELMI-ZFE
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Secondary electrons from the deposit (SE,)

0

Forward scattered electrons (FSE)

Secondary electrons from the substrate surface (SE,)

Secondary electrons from the substrate surface (SE,,)
» Back scattered electrons from the substrate (BSE,,)

Precursor Cross Section:

e Describes the energy dependent probability for
precursor dissociation

e Low energy electrons have HIGHEST probability ...

e ... hence, SE are the major players!

e However, we have to deal with many different SE
electrons ...

e ... which influences the resolution!

[ Substrate

FELMI-ZFE D. Smith et-al, Nanotechnology 18, 265308, 2007




Lateral Resolution

Even optimized single lines reveal a broader appearance compared to the electron beam profile

This is a complex consequence of electron trajectories leading to 4 main broadening effects:
1. Edge broadening: stemming from SE, ,, = widely unavoidable and in the range of 2 =5 nm

primary electrons

—— AFM height profile e-beam intensity profile
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Winkler et-al, ACS Applied Materials and Interfaces 6, 2987, 2014 Schmied et-al, Beilstein Journal of Nanotechnology 6, 462, 2015

Arnold et-al, ACS Applied Materials and Interfaces 6, 7380, 2014 Winkler et-al, ACS Applied Materials and Interfaces 7, 3289, 2015



Lateral Resolution

Even optimized single lines reveal a broader appearance compared to the electron beam profile

This is a complex consequence of electron trajectories leading to 4 main broadening effects:
1. Edge broadening: stemming from SE, ,, = widely unavoidable and in the range of 2 =5 nm
2. Outer halo: mainly attributed to BSE / SE, < contributions from the substrate (Z dependent)
=  Very high or very low primary energies are recommended

primary electrons

edge
BSE-D —> < broadeing
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Lateral Resolution

Even optimized single lines reveal a broader appearance compared to the electron beam profile

This is a complex consequence of electron trajectories leading to 4 main broadening effects:
1. Edge broadening: stemming from SE_,, = widely unavoidable and in the range of 2 =5 nm
2. Outer halo: mainly attributed to BSE / SE, s contributions from the substrate (Z dependent)
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Lateral Resolution

Even optimized single lines reveal a broader appearance compared to the electron beam profile

This is a complex consequence of electron trajectories leading to 4 main broadening effects:
Edge broadening: stemming from SE,, = widely unavoidable and in the range of 2 -5 nm
2. Outer halo: mainly attributed to BSE / SE, < contributions from the substrate (Z dependent)
=  Very high or very low primary energies are recommended

3. Deposit related BSE: these are the real resolution limiting electron species; originate from
the growing deposit itself (BSE,) and entail SE,,, for dissociation (also Z dependent)

= |f available a highly focused e-beam with less than < 1keV would be ideal
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Lateral Resolution

Even optimized single lines reveal a broader appearance compared to the electron beam profile

This is a complex consequence of electron trajectories leading to 4 main broadening effects:
1. Edge broadening: stemming from SE, ,, = widely unavoidable and in the range of 2 =5 nm
2. Outer halo: mainly attributed to BSE / SE, < contributions from the substrate (Z dependent)
=  Very high or very low primary energies are recommended

3. Deposit related BSE: these are the real resolution limiting electron species; originate from
the growing deposit itself (BSE,) and entail SE,,, for dissociation (also Z dependent)
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Lateral Resolution

Even optimized single lines reveal a broader appearance compared to the electron beam profile

This is a complex consequence of electron trajectories leading to 4 main broadening effects:

=

Edge broadening: stemming from SE,, = widely unavoidable and in the range of 2 -5 nm
Outer halo: mainly attributed to BSE. / SE, s contributions from the substrate (Z dependent)

N

= Very high or very low primary energies are recommended

3. Deposit related BSE: these are the real resolution limiting electron species; originate from
the growing deposit itself (BSE,) and entail SE,,, for dissociation (also Z dependent)

= |f available a highly focused e-beam with less than < 1keV would be ideal
4. Inner halo: mainly caused by FSE / SE,, species from the deposit itself
= Avoidable via very low currents to reduce the FSE contribution

intended width
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Intermediate Summary

Lateral feature sizes are broader than the electron beam because of:

1. Fundamental SE broadening (unavoidable)

2. Deposit related BSE, / SE, , (decaying for lower primary electron energies)

3. Substrate related BSE. / SE, s (either very high or very low primary energies are recommended)
4. Deposit related FSE / SE,, (decaying for very low currents)

Now we now about the broadening origins and its consequences ... lets build a cuboidal deposit!




Patterning

19
Actually, we would like a cuboidal structure ...
... however, we often end up with different and
disrupted morphologies!
ideal settings
*  The reason for these deviations is the
precursor working regime
« It describes the local balance between
available precursor molecules and
dissociating electron species ...
* ... and that depends on the replenishment!
‘; gas phase adsorbtion
& A
& W “
diffusion & “\ diffusion
¢ ou ';K—
» o P» ¢ < - . -
W Q0OEOO6 66666 - T T

OO SO0

FELMI-ZFE



Patterning

20
Actually, we would like a cuboidal structure ...

... however, we often end up with different and
disrupted morphologies!

ideal settings

* The reason for these deviations is the
precursor working regime

« It describes the local balance between
available precursor molecules and
dissociating electron species ...

* ... and that depends on the replenishment!
e o
long replenishment time
e o o
° e o o short replenishment time ,'3,4

point E poi/;t M VG RE >VGR

. how to handle that?
— U
FELMI-ZFE




Morphology Optimization

patterning related
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* Although complex in detail, .** ~ SPIRAL | SERPENTINE RASTER K
there is 3 systematic :.' ,ridge / trench shape* ... ,tunnel shape* .chair shape® m 'E
transition between .
different morphologies :

* A parameter map can help
to identify the issuesand ™. o
adaptthe process AN I N NSNS EEESEEEEIESEESEEEENENNSESENNEEEEEEEEEEEEEEEEEEEEEEEan®
parameters accordingly R 277777 Slanted shape® e,

S : :

* Asevident, there are four ?QE)’ - :
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concave, patterning related & - .
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extreme conditions barely ".’. ‘.:'
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Intermediate Summary

Lateral feature sizes are broader than the electron beam because of:

1. Fundamental SE broadening (unavoidable)

2. Deposit related BSE, / SE, , (decaying for lower primary electron energies)

3. Substrate related BSE. / SE, s (either very high or very low primary energies are recommended)
4. Deposit related FSE / SE,, (decaying for very low currents)

Shape fidelity crucially depends on local precursor coverage

1. Serpentine strategies are the best compromise

2. Raster (line-by-line) and other exotic strategies (spirals, ...) should be avoided

3. The gqualitatively constant parameter map can help to adapt parameters to high-fidelity shapes

After this shape discussion the question remains “what’s inside?”




Chemistry and Internal Structure

* In many cases FEBID materials reveal metal-matrix composition consisting of 2-6 nm large metal
grains which are spatially homogenously embedded in an (hydro-)carbon matrix (up to 90 at.%)

*  That mainly stems from incompletely dissociated pre-cursor molecules or from e-beam assisted
polymerized carbon fragments

* Depending on the precursor there are examples where the former and the latter can be
compensated by adapted process parameters or by different sample conditions, respectively

(@)
100 e .
95 i Co ]

90 !
85
80

752

atomic %

i
0.1 1 10
Electron Beam Current (nA)

100 —

e - """ 2
Co,5kV25pA

80 |-
60 [ Co, 30kV 44 pA

40 + C, 30 kV 44 pA

atomic %

20

20 40 60 80 100 120
J. M. de Teresa et-al, J. Phys. D: Appl. Phys. 49, 243003, 2016 R. Cérdoba et-al, Microelectron. Eng. 87, 1550-3, 2010 T . (=C)
A. Fernandez-Pacheco et-al, J. Phys. D: Appl. Phys. 42,055005,2009  TEM tomography done by G. Haberfehlner & G. Kothleitner (TU Graz) supstrate



FEBID Materials: Tunability

* Asexample, Pt based FEBID materials reveal electric resistivities, 6 — 7 orders of magnitude
higher compared to pure metals, thus reducing or even masking the intended functionality

Resistivity (u2.cm)

Plank et-al, J. Vacu. Sci. Tech. B 2011, 29, 051801
Plank et-al, Nanotechnology 2013, 24, 1753052013

* However, there are two stages of tunability: 1) tuning & 2) purification

 The former bases on a post-growth e-beam exposure which finalizes the dissociation leading to
increasing grain sizes at constant grain-to-grain distance = this improves the tunnelling
probability and allows precise tuning of electric conductivity by more than 3 orders of
magnitude from insulating to metallic behaviour (works also well for Au based precursor)

max. tunability via
process parameters

____3__'__'_ _'_--_:__'. |on béams

T|!|f|f'l';'353'
A - prepared 4

m====e==_ full cliring ]

410°

Is full purification possible?

Resistivity (u€.cm)

Huth, Beilstein J. Nanotechn. 2012, 3, 597
Huth et-al, Phys. Rev. Lett. 2011, 107, 206803

~1.7 22.2 nm Pt grain @

<V ineured

5 keV, 98 pA, single wire
~50x 8 x 2000 nm

NOT conductive after deposition

(current compliance)

N full curing in less
I\ .
NN than 3 minutes
I e R e e
o] [ i i i
32 |
Z |
E I
Z l J
© |
|
20 1
20
— post-growth w1 ‘ ‘ ‘ .
e-bam Curing 0.0 015 110 115 2’0 ZI‘E 3jD a5
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FEBID Materials: Tunability

* Asexample, Pt based FEBID materials reveal electric resistivities, 6 — 7 orders of magnitude
higher compared to pure metals, thus reducing or even masking the intended functionality

* However, there are two stages of tunability: 1) tuning & 2) purification

 The former bases on a post-growth e-beam exposure which finalizes the dissociation leading to
increasing grain sizes at constant grain-to-grain distance = this improves the tunnelling
probability and allows precise tuning of electric conductivity by more than 3 orders of
magnitude from insulating to metallic behaviour (works also well for Au based precursor)

max. tunability via
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Plank et-al, Nanotechnology 2013, 24, 1753052013 Huth et-al, Phys. Rev. Lett. 2011, 107, 206803



FEBID Materials: Full Purification

* Asexample, Pt based FEBID materials reveal electric resistivities, 6 — 7 orders of magnitude
higher compared to pure metals, thus reducing or even masking the intended functionality

* However, there are two stages of tunability: 1) tuning & 2) purification

* The second approach also uses a post-growth e-beam exposure, however, in the presence of
room temperature H,0 vapour which ENTIRELY removes the carbon

* The biggest advantage of this approach is the pore & crack free morphology together with
qualitatively maintained surface surfaces shapes and a minimal lateral shrink of less than 5 rel.%.

1,0+
08
06

04 1 diagonal cross section for: 1
0,2 —— as deposited

0,0 —— fully purified
-2,0 -1,6 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0
distance (um)

line widths < 30 nm

normalized height

e-beam assisted
purification
in H,O vapours

600.0 nm

carbon free, pure Pt!
20 nm

© on-demand plasmonics ©

Plank et-al, ACS Applied Materials & Interfaces 2014, 6 1018 Fowlkes et-al, PCCP 2015, 17, 18294 Winkler et-al, in preparation 2016
Geier et.al.; J. Phys. Chem. C, 2014, 18, 25, 14009 Lewis et-al, Beilstein Journal of Nanotechnology 2015, 6, 907 Haselmann et-al, in preparation 2016



FEBID Materials: Full Purification

* Asexample, Pt based FEBID materials reveal electric resistivities, 6 — 7 orders of magnitude
higher compared to pure metals, thus reducing or even masking the intended functionality

* However, there are two stages of tunability: 1) tuning & 2) purification

* The second approach also uses a post-growth e-beam exposure, however, in the presence of
room temperature H,0 vapour which ENTIRELY removes the carbon

* The biggest advantage of this approach is the pore & crack free morphology together with
qualitatively maintained surface surfaces shapes and a minimal lateral shrink of less than 5 rel.%.
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Geier et.al.; J. Phys. Chem. C, 2014, 18, 25, 14009 Lewis et-al, Beilstein Journal of Nanotechnology 2015, 6, 907 Haselmann et-al, in preparation 2016



FEBID Materials: Full Purification

* Asexample, Pt based FEBID materials reveal electric resistivities, 6 — 7 orders of magnitude
higher compared to pure metals, thus reducing or even masking the intended functionality

* However, there are two stages of tunability: 1) tuning & 2) purification

* The second approach also uses a post-growth e-beam exposure, however, in the presence of
room temperature H,0 vapour which ENTIRELY removes the carbon

* The biggest advantage of this approach is the pore & crack free morphology together with
qualitatively maintained surface surfaces shapes and a minimal lateral shrink of less than 5 rel.%.
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Intermediate Summary

Lateral feature sizes are broader than the electron beam because of:
Fundamental SE broadening (unavoidable)

2. Deposit related BSE, / SE, , (decaying for lower primary electron energies)
3. Substrate related BSE. / SE, s (either very high or very low primary energies are recommended)
4. Deposit related FSE / SE,, (decaying for very low currents)

Shape fidelity crucially depends on local precursor coverage

1. Serpentine strategies are the best compromise

2. Raster (line-by-line) and other exotic strategies (spirals, ...) should be avoided

3. The gqualitatively constant parameter map can help to adapt parameters to high-fidelity shapes

FEBID materials are far from “pure” for many precursor

1. Mostly, FEBID materials reveal metal-matrix composition (metallic nano-grains in carbon matrix)
2. However, the functionality can precisely be tuned from insulating to conductive

3. Recent development also allow full transfer into pure metals (problematic with O sensitive mat.)

OK ... so we have a direct-write bottom-up technology, applicable on virtually any given surface ...
not bad but is there another unique selling point?




True 3D Nanoprinting

* In principle, this technology allows the fabrication
of free-standing 3D structures ... however, often
via time-consuming trial-and-error approaches

* Recently, we have managed to turn around the
situation and can now use CAD models as input for
simulations which then can directly be fabricated

Winkler et-al, ACS Applied Materials and Interfaces (2014), 6, 2987
Winkler et-al, ACS Applied Materials and Interfaces (2015), 7, 3289 Fowlkes et-al, ACS Nano, in print, 2016

CAD based modeling



True 3D Nanoprinting

* In principle, this technology allows the fabrication
of free-standing 3D structures ... however, often
via time-consuming trial-and-error approaches

* Recently, we have managed to turn around the
situation and can now use CAD models as input for
simulations which then can directly be fabricated

10500 nm

Winkler et-al, ACS Applied Materials and Interfaces (2014), 6, 2987
Winkler et-al, ACS Applied Materials and Interfaces (2015), 7, 3289 Fowlkes et-al, ACS Nano, in print, 2016
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True 3D Nanoprinting




Intermediate Summary

Lateral feature sizes are broader than the electron beam because of:

1. Fundamental SE broadening (unavoidable)

2. Deposit related BSE, / SE, , (decaying for lower primary electron energies)

3. Substrate related BSE. / SE, s (either very high or very low primary energies are recommended)
4. Deposit related FSE / SE,, (decaying for very low currents)

Shape fidelity crucially depends on local precursor coverage

1. Serpentine strategies are the best compromise

2. Raster (line-by-line) and other exotic strategies (spirals, ...) should be avoided

3. The gqualitatively constant parameter map can help to adapt parameters to high-fidelity shapes

FEBID materials are far from “pure” for many precursor

1. Mostly, FEBID materials reveal metal-matrix composition (metallic nano-grains in carbon matrix)
2. However, the functionality can precisely be tuned from insulating to conductive

3. Recent development also allow full transfer into pure metals

FEBID has evolved from a flexible direct-write process into a true 3D nano-printing technology

1. In combination with simulations, the fabrication of complex, free-standing 3D architectures
becomes possible with branch diameters of less than 30 nm ...

2. ...and that on virtually ANY given surface!



FEBID Processing: PROs & CONs

34

OO SO0

FELMI-ZFE

FEBID uses as nano-sized electron beam for local,
decomposition of surface adsorbed precursor 2
molecules allowing the fabrication of complex

nanostructures with conductive, insulating, semi-
conducting, magnetically (...) properties

+ It can be applied on virtually ANY given surface
—> charging / e-beam sensitive surfaces are
challenging

+ Feature sizes can be on the real nanoscale
—> limited by electron trajectory related effects

+ High shape fidelities can be achieved
—> requires careful process setup due to local
depletion effects

+ Provides unique metal-matrix nano-composition
—> can reduce / mask the main functionality 2on_

+ Allows structural / chemical / functional /
mechanical tunability = from tuning to full
purification - currently via post-processing

+ Enables true 3D nano-printing
—> requires simulations
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From Fundamentals
Towards Applications

FELMI-ZFE



Courtesy of Patricia Peinado, Soraya Sangiao, and José
Maria de Teresa; successfully developed at the Universidad

de Zaragoza (Spain)

FEBID on (Charging) Polymeric Surfaces

36
* FEBID can also be performed on basically insulating

polymer substrates (with a few tricks)

iffraction

* The biggest advantage in this respect is the
combination with flexible substrates as the
functionality is maintained over a huge range!

* By that e.g. FEBID based (nano)optical applications
on flexible and transparent surfaces becomes
possible which has been widely ignored in the past

o0

FELMI-ZFE

Peinado et-al, ACS Nano, 9 (6), 2016
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Combination with Cellulosic Material

* Recently, the fabrication of pure cellulose nanostructures via direct-write Focused Electron Beam
Induced Conversion (FEBIC) was successfully demonstrated

* This allows for the first time to create biomaterials structures in the sub-100 nm regime ©

Substrate

ORrR

OH
1 -..o%o S o inmm— ...O%Q H o
OR 9 (8] OH OH o o]
OH

OR

TMSC *®

H
H
YY) Q o Ouses
o
OH OH 0
OH

Ganner et-al, Nature Scientific Reports, re-submitted, 2016



Combination with Cellulosic Material

* Recently, the fabrication of pure cellulose nanostructures via direct-write Focused Electron Beam
Induced Conversion (FEBIC) was successfully demonstrated

* This allows for the first time to create biomaterials structures in the sub-100 nm regime ©

b

140.0 nm

2 um

Ganner et-al, Nature Scientific Reports, re-submitted, 2016



FEBID Nanowelding: Reducing Graphene Contact Resistances

Unique Advantages of the FEBID nanowelding: 25 ——
39 0 ) . After FEBID (5e18 e/cm?) _
« Up to 50% reduction of contact resistance: due to S o 65 min
enhanced electrochemical coupling _°
o . 2 15 50%
« Fast processing time for enhanced scalability: only g Reduction
o
a few seconds per 1 um? contact area g 10F  30%
) ) ) ) ) ) S Reduction
* High insertion potential into conventional CMOS 2 .
(O]
deice fabrication workflows for 2D materials . V,,= 100 mV, W~L5 pym & L ~10 pm
. . . . . O 1 1 1 1 1 1
« Turning the negative impact of PMMA residues into 8 20 10 0 10 20 30
Gate Voltage, ng—VDirac V)
an advantage!
Step 1. Graphene transfer and p Step 2. Nanodevice fabrication Step 3. Nanowelding of the interfaces using focused electron beam
reparation using e-beam lithography

! Au(50 nm)/Cr(10nm

Sio, ' Sio,

p+ doped Si p+ doped Si

FELMI-ZFE g kim et al., ACS Nano (2016).

Step 4. Postdeposition
thermal annealing in air at
350 °C to achieve:

SiO, - Removal of parasitic
p+ doped Si carbon contamination

from the channel
- Complete graphitization
of FEBID interlayer “glue”

Courtesy of Songkil Kim and Andrei G. Fedorov; successfully
developed at the Woodruff School of Mechanical
Engineering / Georgia Institute of Technology (USA)




Metal-Matrix Nanocomposits: Quasi-2D Gas Sensors

* The application of nano-granular materials for sensor applications has also been demonstrated

* Adsorbed polar molecules vary the charging energy due to variation of the particle capacitance
which influences the tunneling probability and by that the macroscopic device current

* Such sensors react fast, reversible, selective, and quantitative without any reformation cycles

fabrication time ~ 60 sec.

~ 2 nm Pt grains carbon
|/ carbon
O O

@) matrix / I
(ONONoNeXOX®; particle size
O 0O determines
their loading
Substrate A
—

loading energy defines
tunneling probability (I,)

Kolb et-al, Nanotechnology 2013, 24, 305501
Huth et-al, Applied Physics A 2014, 117, 1689

physisorbed H,O

adsorption

reduced
loading
energies

desorption I

tunneling probability increased
= increasing device current (lg)



Metal-Matrix Nanocomposits: Quasi-2D Gas Sensors

* The application of nano-granular materials for sensor applications has also been demonstrated

* Adsorbed polar molecules vary the charging energy due to variation of the particle capacitance
which influences the tunneling probability and by that the macroscopic device current

* Such sensors react fast, reversible, selective, and quantitative without any reformation cycles

fabrication time ~ 60 sec. fast & reversible selective guantitative
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o ' s R
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~ 2 nm Pt grains carbon
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o) O O000oYO
OO0 Q0000 ooOoOO
O O O o O

Substrate

variable resistor
(Wheatstone bridge)

Kolb et-al, Nanotechnology 2013, 24, 305501
Huth et-al, Applied Physics A 2014, 117, 1689



Metal-Matrix Nanocomposits: Quasi-1D Gas / Mass Sensors

* Quasi-1D Pt-C nano-pillars can be excited via electric AC-fields
according to their mechanical resonance frequency

* The small dimensions, the soft mechanical character and the
electric conductivity allow highly sensitive

gas sensing (reversible)

mass sensing (irreversible)
* External electric read-out possible!

* Also, these materials allow mechanical post-fabrication tuning

side view

resonator
top view

side view

excitation
electrode

Pt-C pillar on Si

Arnold et-al, in submission, 2016
Winkler et-al, in preparation 2016
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Metal-Matrix Nanocomposits: Quasi-1D Gas / Mass Sensors

* Quasi-1D Pt-C nano-pillars can be excited via electric AC-fields
according to their mechanical resonance frequency

* The small dimensions, the soft mechanical character and the
electric conductivity allow highly sensitive

— gas sensing (reversible)
— mass sensing (irreversible)

* External electric read-out possible!

* Also, these materials allow mechanical post-fabrication tuning
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Arnold et-al, in submission, 2016
Winkler et-al, in preparation 2016
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Metal-Matrix Nanocomposits: Quasi-1D Gas / Mass Sensors

* Quasi-1D Pt-C nano-pillars can be excited via electric AC-fields
according to their mechanical resonance frequency

* The small dimensions, the soft mechanical character and the
electric conductivity allow highly sensitive

— gas sensing (reversible)

* External electric read-out possible!

* Also, these materials allow mechanical post-fabrication tuning

e-beam

E (GPa)

Arnold et-al, in submission, 2016
Winkler et-al, in preparation 2016
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AFM Tip Modification

*  We work together with the company GETec Microscopy (Vienna, Austria) on the cantilever
development for a fast, non-optical, in-situ AFM for seamless integration in SEMs / FIBs

*  FEBID Application 1: fully metallic high-resolution tips for C-AFM & point-probing
Classical C-AFM Ti Pure Metal FEBID Tip

»n S

Non-Coated High-Res Tip

After forming

14.0 nm 14.0 nm

Height Sensor 100.0 nm Height Sensor 100.0 nm Height Sensor 100.0 nm

AFSEM™ powered by GETec Microscopy

pre-structured

electrodes
electric FEBID assisted

nano-probe conduction

self-sensing Chip with self-

we elements sensing cantilever



AFM Tip Modification

*  We work together with the company GETec Microscopy (Vienna, Austria) on the cantilever
development for a fast, non-optical, in-situ AFM for seamless integration in SEMs / FIBs

*  FEBID Application 1: fully metallic high-resolution tips for C-AFM & point-probing

After forming
sample cross section

AlL,O Al,O Al
U mm Au g’ Au

A 20 Au

pre-structured

conductive S — SEM image electrodes
self-sensing of gold and
cantilever - aluminiumoxide
‘ traces on
siliconoxide

chemical |
composition !
analysis
(EDX)

of aluminiumoxide of siliconoxide of gold



AFM Tip Modification

*  We work together with the company GETec Microscopy (Vienna, Austria) on the cantilever
development for a fast, non-optical, in-situ AFM for seamless integration in SEMs / FIBs

*  FEBID Application 1: fully metallic high-resolution tips for C-AFM & point-probing
*  FEBID Application 2: free-standing high-resolution bridges for thermal measurements
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3D Core-Shell Magnetic Co Nanowires M de Teresa;succesfuly developed atihe Universiad

de Zaragoza (Spain)

Very recently, the fabrication of quasi-1D Pt / Co core-shell nano-pillars was successfully shown

Thus, the Co core can be protected from oxidation which is of essential importance on that scale

Electron beam |

(a) Position (nm)
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N B2 &
o o o o o o O

N 2 D
o o

Composition (%, at.) Composition (%, at.)

=)

0 20 40 60 80 100 120 140

Position (nm)
J. Pablo-Navarro et-al, Nanotechnology 27, 285302 (2016)



Quasi-Planar Plasmonics

* FEBID high-resolution fabrication & purification of fully purified
Au structures enables fast and flexible on-demand Au bi-ring
plasmonic applications (THz communication,
spectroscopy, ...) (collaboration with Michael Huth)

* Although possible, FEBID approaches its resolution
and shape-fidelity limitation which requires careful
optimization ...

250 nm

N 2] 18]

15.0nm

50

~28 nm base width (20 nm FWHM) final height ~ 4 nm

®

1
0.0 1: Height Sensor 502.0 nm

As — deposited:
Rnner 70 nm
Rourer 170 nm
Height 25 nm

12x12 array on glass-ITO
embedded in an Au aperture

-10.0nm

M. Thomson / U. Radeschnig et-al, in preparation, 2016



Quasi-Planar Plasmonics

* FEBID high-resolution fabrication & purification of fully purified
Au structures enables fast and flexible on-demand Au bi-ring
plasmonic applications (THz communication,
spectroscopy, ...) (collaboration with Michael Huth)

* Although possible, FEBID approaches its resolution
and shape-fidelity limitation which requires careful

optimization ...
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Motivation
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* (Scanning) transmission electron microscopy ((S)TEM) based
electron energy loss spectroscopy (EELS) has been proven to
be a very powerful tool for studying plasmonic behaviour
down to the lower nanoscale

.1 V.
-1

4-\
)

* Several new effects have been identified in (depth-convoluted)
2D but also in 3D

* A common element of many investigations, however, is the
quasi-2D / planar character of the plasmonic elements
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* Although highly interesting for both theoretical and
application orientated aspects, fabrication of complex & free-
standing 3D nano-architectures remain a real challenge
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1. Experiment

Schmidt et-al, Optics Letters (2015), 40 (23), 5670. Schmidt et-al, Nano Letters (2014), 14, 4810 Garcia de Abajo et-al, Rev. Mod. Phys. (2010), 82, 209
Haberfehlner et-al, Nano Letters (2015), 15 (11),7726. Schmidt et-al, Nature Communications (2014), 5, 3604 Kociak et-al, Chem. Soc. Rev. (2014), 43, 3865



3D Nano-Plasmonics: Beyond Current Limitations!

The combination of FEBIDs 3D capabilities with (Au) purification opens up entire new capabilities
Although more complicated during purification, ideal conditions lead to free-standing, compact,

and structurally dense Au structures with minimal surface contamination and branch diameters
below 25 nm - 3D PLASMONICS!

e-beam assisted H,O purification

3D Nanoprinting mechanical
instabilities slightly
change the shape

Winkler et-al, in preparation 2016



3D Nano-Plasmonics: Beyond Current Limitations!
e The combination of FEBIDs 3D capabilities with (Au) purification opens up entire new capabilities
e Although more complicated during purification, ideal conditions lead to free-standing, compact,

and structurally dense Au structures with minimal surface contamination and branch diameters
below 25 nm - 3D PLASMONICS!
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Thank you for your attention!

done by DI Martin Stermitz following a little joke during coffee @



