

Nanolithography equipment

AFM

e-beam writer

SEM

Why reducing the dimensions of a device?

Advantages:

- Speed (fast response time)/Sensitivity
- Less energy consumption
- Save of space/Increase of integration
- Save of material cost / Batch fabrication
- Scaling:
 - Need for adapted fabrication methods
 - At micro and nano scale, objects behave differently
 - Macroscopic scale: Water falls down from a glass facing down
 - Microscopic scale: Due to surface tension, water does not fall down from a glass facing down

Miniaturization in electronics:

The technology that has most influenced life during the last 60 years

Entertainment

Richard P. Feynman. Physicist. 1918-1988 1959: There is plenty of room at the bottom

"(...)computing machines are very large; they fill rooms. Why can't we make them very small, make them of little wires, little elements---and by little, I mean little. For instance, the wires should be 10 or 100 atoms in diameter, and the circuits should be a few thousand angstroms across."

Gordon E. Moore, Chemist (1929-) 1965: "Cramming more components onto integrated circuits"

"The future of integrated electronics is the future of electronics itself. (...) Integrated circuits will lead to such wonders as home computers, or at least terminals connected to a central computer, automatic controls for automobiles, and personal portable communications equipment"

Vacuum tubes vs transistor https://en.wikipedia.org/wiki/Vacuu

1958 (integrated circuit)

2015 Integrated circuit

2015 Intel[®] Core[™] M

Some features:

- Transistor Fin Pitch: 42 nm
- Transistor Gate Pitch: 70 nm
- Interconnect Pitch: 52 nm
- 0.0588 um² SRAM cell
- Approx: 10 billions transistors /microprocessor
- Frequency: 4 GHz

The Transistor

THE NANO DEVICE !!

Dimensions: 10 nano-metres

Switching time: 0.1 nano-seconds

Number of transistors: 10^9

Computer performance

Gordon E. Moore. Craming more components onto integrated circuits . Electronics, Volume 38, Number 8, April 19, 1965

Power consumption

(intel)

Transistor Performance vs. Leakage

How integrated circuits are fabricated?

Diffraction limits resolution

Today's lithography equipment

Price: approx 100 M€

Double patterning techniques

11 nm channgel length achievable with immersion lithography

Double patterning techniques

© Applied Materials

88nm

© IMEC

etched using double

pattering

Nanolithographies:

Resolution vs Throughput

Nanolithographies: Present status

SPL: Scanning Probe Lithography	VSB: Variable Shape Beam Electron Beam Lithography
EBID: Electron Beam Induced Deposition	DUV: Deep UV Optical Lithography
GEB: Gaussian Beam Electron Beam Lithography	EUV: Extreme UV Optical Lithography
CAR: Chemical Amplified Resists Electron Beam Lithography	NIL: Nanoimprint Lithography

Bottom-up fabrication

ightarrow The morphology of the BCP depends on the ratio between the molecular weights of both blocks:

Phase separation in block copolymers

- The propensity for block copolymers to phase separate into periodic microdomains is determined by the strength of the repulsive interaction
- It is characterized by the product χN :
 - χ is the Flory-Higgins interaction parameter
 - N is the number of monomers in the diblock copolymer
- Microphase separation can occur when χN exceeds the critical value for the order-disorder transition.
- At equilibrium, this microphase separation is established by the energy balance between the stretching energy for the polymer chains and the energy of interactions at the interface between A and B microdomains.

L

5.

\rightarrow The **block copolymer pitch** (L₀) depends on its **molecular weight**.

BLOCK CO-POLYMER SELF ASSEMBLY

Vertical Lamella

GUU

PS-b-PMMA. Line width: 11 nm

40.UTT

Directed block copolymer self-assembly for nanoelectronics fabrication. Daniel J.C. Herr. J. Mater. Res., 26, 122, , 2011

Tiron, R., et al. "The potential of block copolymer's directed self-assembly for contact hole shrink and contact multiplication." SPIE Advanced Lithography. International Society for Optics and Photonics, 2013.

(b)

Two-Dimensional Pattern Formation Using Graphoepitaxy of PS-b-PMMA Block Copolymers for Advanced FinFET Device and Circuit Fabrication

Two-Dimensional Pattern Formation Using Graphoepitaxy of PS-b-PMMA Block Copolymers for Advanced FinFET Device and Circuit Fabrication

<section-header><section-header><section-header><complex-block>

Nanomechanical sensors

Simplest mechanical structure: cantilever

Mechanical properties as a function of dimension

F = k x $k = \frac{E}{4} \cdot \frac{t^3 \cdot w}{l^3} \quad (N/m)$ $f_{res} = 0.162 \cdot \sqrt{\frac{E}{\rho}} \cdot \frac{t}{l^2} \quad (Hz)$

Cantilever	/ (μm)	<i>w</i> (μm)	t (μm)	<i>k</i> (N∕m)	f _o	m _{eff} (g)
Soft	450	50	2	0.2	14 kHz	2.5·10 ⁻⁸
Stiff	125	30	4	44	364 kHz	8.4·10 ⁻⁹
Sub- micro	10	0.5	0.1	0.02	1.4 MHz	2.8·10 ⁻¹³
Nano	1	0.5	0.1	20	134 MHz	2.8·10 ⁻¹⁴

Static versus dynamic mode

The nanomechanical cantilever:

From MEMS to Quasi 1D NEMS

Bottom-up versus top-down nanofabrication

We have explored two different fabrication approaches:

Bottom-up

 Nanowires synthesized using chemical methods

Top-down

 Nanowires defined using photolithography, micromachining methods and oxidation

Bottom-up Fabrication Process: Selective deposition of Au Colloids

Static versus dynamic mode

The nanomechanical cantilever:

Applications

Cantilever sensor array with polymer coatings Baller – Ultramicroscopy - 2000

DNA Hibridization detection

Basic idea:

- → Coat each cantilever specifically to each protein / ssDNA
- → Expose to different analytes and observe bendings → specific bindings
- → Differential measurement to have reliable responses

Fritz – Science - 2000

Nanomechanical devices as mass sensors

• Nanomechanical resonators allows to measure ultra-small amounts of mass. In comparison to quartz crystal microbalances, they present advantages in terms of mass sensitivity, spatial resolution and system integration

Principle of operation

- Deposition of mass on top
 of the nanoresonator
- Detection of the negative shift of resonance frequency

In-situ monitoring of the deposition of ultra-thin gold layers

J. Arcamone et al., Nanotechnology (2008),

Cantilever	/ (μm)	<i>t</i> (μm)	<i>w</i> (μm)	<i>k</i> (N/m)	f _o	m _{eff} (g)	Sensitivity (g/Hz)
Soft	450	50	2	0.2	14 kHz	2.5·10 ⁻⁸	3.8.10-12
Stiff	125	30	4	44	364 kHz	8.4·10 ⁻⁹	4.9·10 ⁻¹⁴
Nano	10	0.5	0.1	0.02	1.4 MHz	2.8·10 ⁻ 13	4.2·10 ⁻¹⁹
Nano	1	0.5	0.1	20	134 MHz	2.8·10 ⁻ 14	4.2·10 ⁻²²

Noise limits the minimum detectable change of frequency

Nanomechanical resonator (mechanical noise)

 ✓ Thermomechanical fluctuation Temperature fluctuations Absortion / desorbtion processes

Electrical circuit (Electrical noise)

 $\delta \omega_0 \approx \frac{BW}{SNR}$

 $\delta\omega_{o} \approx \sqrt{\frac{k_{B}T}{E_{C}}} \frac{\omega_{o}BW}{Q}$

Minimum detectable mass assuming only mechanical noise

$$\delta m \approx 2m_{eff} \left(\frac{BW}{Q\omega_o}\right)^{1/2} 10^{(-DR/20)} \qquad \frac{DR(dB) = 10\log(E_c/k_BT)}{E_c = m_{eff}\omega_o^2 \langle x_c^2 \rangle} = \frac{BW < \frac{\omega_o}{2\pi Q}}{BW < \frac{\omega_o}{2\pi Q}}$$

T=300 K		f _o	δf	М _{eff} (g)	ΔM (g)
t=100nm,	Q=20	1.4 MHz	<10 kHz	2.8·10 ⁻¹³	7.72 10 ⁻¹⁸
l=10μm, w=600nm	Q=10000		<10 Hz		1.54 10 ⁻²⁰

Attogram sensitivity is achievable with sub-micrometer size cantilevers Zeptogram sensitivity is achievable with nanometer size cantilevers

1 atom mass sensitivity using carbon nanotubes

(b) Nanotube Au SiO2 Si Si Si Nanotube SiO2 Si SiO2 Si Nanotube SiO2 SiO2 Si Nanotube SiO2 SiO2 Si Nanotube SiO2 SiO2 SiO2 SiO2 Si Nanotube SiO2 S

Summary nanomechanical sensing

Concept

- Improve **sensitivity** by decreasing the dimensions
- Selective bending of the cantilever allowing entity recognition and measurement

Advantages:

- No labeling needed for detection
- Easy and "cheap" production (Si technology)
- Can operate in air, vacuum, or liquid environments
- Fast analysis (within some minutes)
- Cyclic operations after purging
- Arrays :
 - Differential as well as simultaneous measurements
 - Individual coating of each cantilever allows measurement of multiple substances within a mixtures

Jensen, Kim and Zettel, Nature Nanotechnology (2008)

Acknowledgments

Nanonems Group at IMB-CNM

Former members

Joan Bausellas Ana Conde Laura Evangelio Marta Fernandez Steven Gottlieb Matteo Lorenzoni Jordi Llobet Olga Muntada Gemma Rius Nerea Alayo Julien Arcamone Irene Fernandez Cristina Martin Iñigo Martin Lorea Oria Alvaro San Paulo Marc Sansa Guillermo Villanueva

Technical support from the staff of the CNM Clean room is gratefully recognized

Funding agencies

This work is supported by the "European Seventh Framework Programme (FP7)" within the project s "SNM: Single Nanometer Manufacturing for beyond CMOS devices", Pilot Line for Self aaembly of Block co-polymers /PLACYD) Computational Lithography for Self assembly (CoLiSa) and by national funding from FORCE-for-FUTURE (CSD2010-00024), ANEM (TEC2009-14517-C02-01), SGR-NANOFABRICACION (2014 SGR 1025 (MAT2011-15159-E)